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1  T h e r ma l  an d  H yp er sp e c t r a l  D a t a  i n  AR I ES  

1 . 1  I n t r o d u c t i o n  

EO AFRICA (African Framework for Research Innovation, Communities and Applications) is a 

research and development initiative by ESA. It focuses on building African-European R&D 

partnerships and the facilitation of the sustainable adoption of Earth Observation and related 

space technology in Africa. 

Within “ARIES” experimental EO analysis techniques will be developed and validated, 

addressing water management and food security in Africa. Those techniques, algorithms and 

prototype solutions will be based on a new generation of upcoming operational EO data: 

thermal and hyperspectral. The utilization of hyperspectral (PRISMA) and thermal data 

(ECOSTRESS) will deliver important information for the design of future missions (CHIME, 

LSTM). Additionally, algorithms that can be used on such data and tools for its efficient 

processing will be developed. Doing this in an African setting means, that future services will 

take into account the needs of African users. 

2  S t a t e -o f - th e - Ar t  T h er ma l  D a t a  

2 . 1  T h e r m a l  D a t a  –  C h a r a c t e r i s t i c s  

All objects with temperatures above absolute zero emit radiation. The wavelength of the 

emitted radiation depends on the temperature of the object, as prescribed by Wien’s 

displacement law. With an average temperature of around 300 K, the Earth typically emits 

radiation in the 8-14 µm domain, a wavelength range captured by thermal sensors. 

Measurements of emitted radiation as captured by thermal sensors can be converted to 

temperature of the emitting surface using the Stefan-Boltzmann law, which states that the total 

amount of electromagnetic radiation emitted by a blackbody is directly related to its 

temperature. In the context of Earth observation, we talk about Land Surface Temperature 

(LST) or Sea Surface Temperature (SST), depending on the application. A blackbody is a 

hypothetical surface which emits all energy it absorbs. However, very few real objects behave 

like a perfect blackbody. The emissivity of a surface denotes the radiant flux of an object at a 

given temperature over the radiant flux of a blackbody at the same temperature. For thermal 

remote sensing, this means that the temperature measured at the sensor does not necessarily 

match the temperature of the objects on the Earth’s surface. It is therefore important that the 

necessary emissivity corrections are done when deriving land surface temperature from 

thermal measurements.  
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Thermal imaging is able to contribute to mapping and monitoring of vegetation, forest fires, 

geology, determination of soil and surface type, hydrothermal investigations, monitoring of 

volcanic, mineral, and natural hazards, sea surface temperature, ocean colour, and hydrology, 

among other applications. Given the specific focus of ARIES on regional water stress and 

drought monitoring, the remainder of this literature review will focus specifically on the role of 

satellite thermal infrared (TIR) data for vegetation monitoring. In this respect, thermal remote 

sensing has received relatively little attention as compared to optical (VIS/VNIR) remote 

sensing, simply due to the fact that the application of thermal remote sensing is very often 

challenged due to a lack of high spatio-temporal TIR datasets and contamination of data 

streams by clouds. Current TIR products are a compromise between high (low)-spatial and 

low(high)-temporal resolution. In the next section, we specifically focus on the potential of 

satellite thermal data for vegetation monitoring and discuss current approaches, limitations and 

opportunities. 

2 . 2  T h e r m a l  D a t a  f o r  W a t e r  S t r e s s  a n d  V e g e t a t i o n  M o n i t o r i n g  

2 . 2 . 1  I n t r o d u c t i o n  

To ensure global water and food security, a timely identification of plant water stress or drought 

conditions is of utmost importance. Good knowledge of crop water status across expansive 

farming areas can optimize agricultural water use. Water stress (drought) leads to the 

physiological reactions by plants generated due to the shortage of plant available water. Such 

condition is encountered due to prolonged absence of precipitation, that leads to a unique 

condition of rising soil water deficit in conjunction with high evaporative demand from the 

atmosphere (Mallick et al., 2018; 2022). Water stress is one of the most important abiotic 

stressors that limit plant development, crop yield, and food quality (Jones & Schofield, 2008). 

Before apparent indications of water stress show, plants might be irreparably damaged 

(Mahajan & Tuteja, 2005). Consequently, a pre-symptomatic or pre-visual identification of plant 

physiological changes might significantly aid in preventing severe crop losses. 

Cell turgor and leaf water content are diminished under severe and/or persistent water stress 

(Jones, 2004). As a result, stomatal closure reduces the exchange of water vapor between 

plants and the atmosphere, reducing the evaporative cooling effect and resulting in an increase 

in plant surface temperature relative to a plant that is not under water stress (Inoue et al.,1990). 

Nonetheless, stomata regulate not just plant transpiration but also photosynthetic CO2 uptake, 

which prevents CO2 absorption and fixation. Due to stomatal closure, the photosynthetic rate 

is lowered, resulting in a decrease in yield. While a decrease in CO2 uptake owing to stomatal 

closure reduces the photosynthetic rate, irradiance and absorbed photosynthetically active 

radiation (fAPAR) remain unchanged. It is well established, based on the leaf energy balance 

equation, that leaf temperature fluctuates with (evapo)transpiration rates of the leaves and is, 
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thus, a function of stomatal conductance. Temperature of the leaf has an inverse relationship 

with transpiration rate. Typically, the leaf temperature of a fully transpiring plant is between 2 

and 5 degrees Celsius below the ambient air temperature (Jones, 1999). 

Aside from the clear conceptual link between water stress and leaf/canopy temperature, the 

latter can be related to other vegetation characteristics such as fractional vegetation cover. For 

example, under severe water stress, a full-grown canopy can exhibit elevated canopy 

temperature as compared to the unstressed vegetation with same vegetation cover. On the 

other hand, arid and semi-arid complex ecosystems with sparse vegetation cover tend to 

exhibit substantially higher canopy temperatures as compared to sparse vegetation in humid 

continental ecosystems.  

In addition to LST, the land surface emissivity (LSE) is also considered to represent the 

ecohydrological characteristics of ecosystems. Arid and semi-arid ecosystems generally have 

large variations in transpiration (Hulley et al., 2015; Masiello et al., 2014) which is mostly 

associated with high coefficient of variation of soil water content, low ratio of transpiration to 

net available energy, and high potential evaporative demand with respect to precipitation. LSE 

of natural land surfaces is determined by soil geologic material, organic matter, moisture 

content, and vegetation-cover characteristics. However, LSE is independent from the soil 

temperature profile or temperature of the underlying surface. Since the thermal infrared 

radiance measured by satellite radiometers also contain the signals of both temperature and 

emissivity, LSE needs to be segregated from temperature (Jin and Liang, 2006). LSE is also 

a slow changing variable and offers little towards vegetation monitoring at large spatial scale.  

As opposed to VNIR/SWIR spectra, which are primarily dominated by overtones and 

combination modes of fundamental vibrations resulting from interactions between solar 

radiation and leaf contents, TIR spectra are primarily derived from primary absorption bands 

of biochemical leaf compounds, such as cellulose, and should therefore exhibit higher spectral 

contrast (Ribeiro da Luz, 2006). Therefore, changes in the emissivity spectra should coincide 

with changes in the proportions of leaf elements brought on by water stress (Ullah et al., 2013). 

2 . 2 . 2  M e t h o d s  a n d  A l g o r i t h m s  

Indicators based on land surface temperature  

Since the 1970s, TIR remote sensing (8–14 µm) has been recognized as a “possible” method 

for early detection of plant water stress. The bulk of research estimate temperature-based 

indices for the identification of plant responses to water stress using broadband TIR sensors 

(Zarco-Tejada et al., 2013). The first attempt to convert leaf/canopy surface temperatures to a 

notion on crop water stress was done by subtracting ambient air temperature from the 

measured LST, where values larger than 0 point to stressed conditions (Jackson et al.,1977;  
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Idso et al., 1977). The Crop Water Stress Index (CWSI) further exploited this idea and made it 

more applicable for remote sensing applications. CWSI is defined as: 

CWSI = (Tleaf − Twet) / (Tdry − Twet) 

Where Twet represents the leaf/canopy temperature of an optimally transpiring crop and Tdry 

represents a non-transpiring crop (Jackson et al., 1981). By using these theoretical upper and 

lower boundaries of transpiration, CWSI implicitly also accounts for other factors potentially 

affecting crop water stress, such as wind, radiation and vapor pressure deficit (VPD) and 

should be applicable for any crop and any environmental condition (Gerhards et al., 2019). 

One should note however that temperature differences between stressed and non-stressed 

plants can be very subtle in humid and/or cold climates due to low VPD and hence care should 

be taken when applying this approach in temperate climates.  

Although originally designed to be applied on field measurements of leaf/canopy temperature, 

the concept of CWSI has been adopted to remotely determine crop water stress conditions 

based on LST derived from satellite data. From a remote sensing perspective, this requires 

good knowledge on which crop is planted where and the upper and lower temperature 

boundaries for each crop/land cover present in the scene. The latter can be derived through a 

field measurement campaign for the specific crop or land cover of interest, as was for instance 

done by Ciezkowski et al. (2020) to study crop water stress in wetlands using thermal UAV 

data. To overcome these specific data requirements, Veysi et al. (2017) proposed an adjusted 

version of CWSI which can be purely derived from satellite data, i.e., a combination of LST 

and the well-known Normalized Difference Vegetation Index (NDVI) derived from optical 

satellite data. In their definition, Twet and Tdry are replaced by Tcold and Thot signifying the coldest 

and hottest vegetated pixel within the image scene. Another way of minimizing the need for 

additional data is to rely on the standard deviation of canopy temperature (CTSD) as an 

indicator for water stress, as was successfully demonstrated for even moderately stressed 

crops (González-Dugo et al., 2006). 

The combination of LST data and more generic data on crop condition as provided by the NDVI 

and similar metrics is a frequently used strategy in determining crop water stress and 

onset/occurrence of droughts through the use of remotely sensed data. One example is the 

Vegetation Health Index (VHI), being a linear combination of the Vegetation Condition Index 

(VCI, capturing temporal anomalies in NDVI) and the Temperature Condition Index (TCI, 

capturing temporal anomalies in canopy temperature), and used operationally at 1 km spatial 

resolution (AVHRR data) as basis for the Agricultural Stress Index system by FAO (Van Hoolst 

et al., 2016). Another example at low spatial resolution is the Temperature – Vegetation 

Dryness Index (TVDI), where an empirical relation was constructed between LST and NDVI, 

resulting in an index tightly linked to surface soil moisture (Sandholt et al., 2002). High 

resolution examples of the same concept include the Vegetation Temperature Condition Index 
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(VTCI), as implemented by Zhou et al. (2020), where they used MODIS LST and Sentinel-2 

optical imagery to first derive a high-resolution estimate of LST (for more information, see next 

section) and subsequently compute the VTCI, as defined by: 

 

Where for each pixel, the NDVI value is used as a guideline to search for the most suited 

maximum and minimum LST boundaries to be applied. A more complex formulation has been 

suggested by Amani et al. (2017), who added a soil moisture component to their Temperature-

Vegetation-soil Moisture Dryness Index (TVMDI) to estimate drought risk purely based on 

optical and thermal data from either Landsat 8 or MODIS. 

Note that most of the indicators mentioned above provide a relative measure of crop water 

stress, which should be carefully interpreted by agronomic experts to translate these indicators 

to relevant information to farmers, e.g., on the recommended timing and amount of irrigation 

water to be applied. Indeed, further research is needed to determine crop type specific 

thresholds for these indicators (Gerhards et al., 2019). 

In addition to the index-based approaches, time series information of LST, rainfall, fAPAR, and 

NDVI can also be used for vegetation health monitoring. For example, the intra-seasonal and 

inter-annual variability in LST and rainfall can be statistically linked with the intra-seasonal and 

inter-annual variability of NDVI and enhanced vegetation index (EVI). While Kato et al. (2021) 

assessed the inter-annual variability of vegetation phenological events using satellite 

vegetation index time series in drylands, Brando et al. (2010) assessed the seasonal and inter-

annual variability of climate and vegetation indices across different sites in the Amazon Forest. 

This study showed that monthly EVI was positively correlated with PAR and that EVI variability 

was greatest in regions of water stress. Yu et al. (2021) 

(https://ieeexplore.ieee.org/document/9312390) reported interannual spatiotemporal 

variations of LST in China from 2003 to 2018. According to this study, significant changes in 

the annual mean LST were correlated with the change in vegetation coverage and the impact 

of land cover types on the interannual variations of LST is also determined in this study.  No 

studies reported a comprehensive analysis on the possibility of vegetation monitoring by using 

the integrated information of LST, rainfall, fAPAR and multispectral satellite data information. 

Use of land surface emissivity 

A decent review on the use of LSE for vegetation monitoring is available in Neinavaz et al. 

(2021). According to the review, LSE spectra were found to be associated with fractional 

vegetation cover, which enables the detection of various types of land cover (Hewison, 2001). 

Ribeiro da Luz and Crowley (2010) identified nearly half of the fifty tree species using airborne 
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hyperspectral TIR data with varying degrees of success. This study discussed the role of leaf 

angle distribution and leaf size and canopy structure on the LSE spectra contrast among 

species. Meerdink et al. (2019) demonstrated a significant difference between the canopy 

emissivity among different species using airborne hyperspectral TIR data. However, for most 

investigated species, the emissivity of the canopy was not representative of the emissivity of 

the leaves due to the influence of the canopy structure and leaf orientation. A few studies also 

reported the use of LST and LSE to retrieve biophysical and biochemical properties. Banerjee 

et al. (2018) demonstrated better accuracy of LAI retrieval in wheat using TIR data under 

different moisture stress conditions. A combination of LSE and spectral reflectance from VNIR 

and SWIR was found to improve the retrieval accuracy of LAI in a mixed temperate forest 

(Neinavaz et al. 2019). Ullah et al (2012) investigated the possibility of retrieving leaf water 

content using data from the mid- and long- water infrared regions. The fuel moisture content 

and equivalent water thickness as a proxy of vegetation water content could also be predicted 

at canopy level using hyperspectral TIR data. Meerdink et al. (2016) showed the integration of 

TIR data with VNIR/SWIR data could improve the prediction accuracy of foliar traits, including 

cellulose, lignin, leaf mass per area, nitrogen, and canopy water content.  

From the emissivity based approach it can be said that: the generalization that vegetation does 

not generate sufficient spectral features in the TIR for studying plant physiological properties 

is contingent on a number of factors (Ribeiro da Luz & Crowley, 2007): (1) General lack of 

hyperspectral remote sensing instruments (most available setups are based on laboratory 

equipment); (2) Extremely low and complex spectrum emissivity fluctuations originate from 

intricate plant physiological and biochemical processes; (3) Airborne or satellite remote 

sensing TIR sensors with low signal-to-noise ratio (SNR) and low spatial and spectral 

resolution are incapable of detecting tiny fluctuations in the TIR spectral fingerprint of plants; 

(4) To extract precise emissivity spectra, atmospheric correction and advanced TES 

techniques are required. 

Current TIR satellites do not meet the parameters (high SNR, high spectral and spatial 

resolution) necessary to measure the low spectral contrast emissivity characteristics of plants 

from space. Consequently, the scaling up of emissivity-based methods for detecting water 

stress from space is still somewhat limited. In order to better comprehend the relationships 

between the spectral emissivity characteristics and changes in leaf attributes under 

environmental stress situations at different remote sensing scales, additional fundamental 

study is required. 

Modelling of evapotranspiration 

The physically-based modeling of evapotranspiration (ET) could provide an alternative method 

not only for the detection of plant responses to water scarcity, but also for the elucidation of 

plant-soil-atmosphere interactions under environmental stress situations. Estimation of ET by 
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TIR remote sensing is based on surface energy balance (SEB) models. The primary 

assumption of using land-surface temperature (LST) in a SEB model is, TIR remote sensing 

can provide direct information of the land-surface moisture status impacting the surface energy 

fluxes and their partitioning (Norman et al., 1995). Over time, many different ET models have 

been developed, e.g. SEBAL (Bastiaanssen et al., 1998), SSEBop (Senay et al., 2013), 

ALEXI/DisALEXI (Anderson et al., 2011), ETLook (Bastiaanssen et al., 2012), STIC (Mallick 

et al., 2018; 2022; Trebs et al., 2021), all showing slight differences in the way the problem is 

approached. While a full review of ET models is beyond the scope of this state-of-the-art 

review, the derived actual evapotranspiration can be used to estimate drought conditions and 

water stress levels. The Evaporative Stress index (ESI), computed as standardized anomalies 

of the ratio of actual to reference ET (Anderson et al., 2007). Whereas this ESI has been shown 

to well match other frequently used drought indicators when applied to low-resolution EO data 

at the continental scale (e.g. Anderson et al., 2016), different versions of this indicator are now 

being produced directly based on high resolution thermal data from ECOSTRESS, thereby 

increasing the potential of this indicator for precision agriculture applications. 

2 . 2 . 3  C h a l l e n g e s  a n d  F u t u r e  D e v e l o p m e n t s  

Numerous airborne and satellite TIR sensors have been created and utilized in agriculture due 

to the huge potential of temperature-based indices for the pre-visual identification of plant 

reactions to water stress (Khanal et al., 2017). As a result of their low spatial and/or temporal 

resolution, however, satellite sensors are inadequate for precision agriculture applications. 

Landsat 8 has the best spatial resolution with 100 m, which corresponds to a single field per 

pixel for the majority of agricultural cultivation systems (Mahlein, 2016). Consequently, recent 

advances in TIR remote sensing from airborne and Unmanned Aerial Vehicles (UAVs) offer 

the potential to bridge the gap between low-resolution satellite images and small-scale in situ 

measurements (Berni et al., 2009). 

For highest benefit in agricultural water management applications, frequent thermal imaging 

(4-day revisit) at sub-field (100 m or less) spatial resolution is necessary. While the current 

fleet of Landsat satellites (7 and 8) provides the required spatial resolution, the 8-day combined 

revisit can be insufficient to detect quick changes in surface moisture status or crop phenology, 

especially in regions with persistent cloud cover. Current state-of-the-art thermal infrared 

sensing satellites deliver either high temporal (e.g., MODIS, AVHRR, VIIRS, or Sentinel-3 with 

1–3 days revisit time) but coarse spatial (i.e., 1 km) resolution images or high spatial (e.g., 

Landsat series, Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) with 100 m) but low temporal (i.e., 16 days) resolution images. Multi-sensor scaling, 

such as pan-sharpening, or more advanced disaggregation techniques could be one solution 

(e.g., thermal sharpening or temperature unmixing). The combining of distinct spectral 
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domains in a multi-sensor approach would provide the potential for novel soil–plant–

atmosphere continuum discoveries (Gerhards et al., 2019). 

The basic concept behind thermal sharpening is to model the relationship between the thermal 

and optical responses of the landscape at coarse spatial resolution and applying that model 

on high-resolution optical data to produce high-resolution thermal imagery. Traditionally, this 

relation is established with the shortwave-infrared reflectance bands of the optical sensor, as 

this information is tightly linked to water content, in turn an important explanatory factor for 

LST. TsHARP (sharpening thermal imagery), a widely used thermal sharpening technique, 

uses fractional vegetation cover (fc) derived from the NDVI as explanatory variable for the 

thermal behavior of the land surface (Kustas et al., 2003; Agam et al., 2007). A key assumption 

in TsHARP is that this relation between fc and LST remains constant throughout various 

landscapes, which has been shown by many subsequent studies to not be the case (e.g. 

Jeganathan et al. 2011; Chen et al., 2012). Through time, many adaptations to TsHARP have 

been suggested, including developing separate fc-LST relationships for different land cover 

types (Merlin et al., 2010) and adding additional explanatory variables such as albedo 

(Dominguez et al., 2011). All this research has demonstrated thermal sharpening should be 

done in a more flexible way. Gao et al. (2012) therefore introduced a data mining approach to 

thermal sharpening, where scene-specific regression trees are fitted between the thermal 

response and shortwave-infrared reflectance. This Data Mining Sharpener (DMS) clearly 

outperformed the traditional TsHARP technique, specifically in highly heterogeneous 

landscapes. DMS has later been adopted in the Sen-ET project, where it was used to produce 

sharpened LST based on Sentinel-3 thermal and Sentinel-2 optical data and in turn was 

combined with the two source energy balance (TSEB) model to generate 20m resolution ET 

estimates (Guzinski et al., 2020). Their implementation of the DMS has been released as open-

source software on GitHub. A similar approach has been used by Zhou et al. (2020) to 

disaggregate MODIS LST data to the spatial resolution of Sentinel-2. 

An important limitation of which users should be aware when combining satellite data from 

multiple platforms is the potential misalignment between products from different sensors due 

to differences in registration and orthorectification. Xue et al. (2020) for instance obtained a 

blurred result when sharpening ECOSTRESS data using Landsat optical imagery due to slight 

geometric shifts between both data sources. They therefore proposed a modified version of 

the DMS, extending the spatial window under consideration when identifying homogeneous 

low-resolution pixels in the thermal imagery, being an essential step during the sharpening 

procedure. They demonstrated this modification yielded more accurate results when 

combining thermal data from ECOSTRESS and VIIRS with harmonized Landsat-Sentinel data. 

In the previous paragraph we have seen that the spatial resolution of thermal imagery can be 

improved through data fusion approaches with high-resolution optical imagery. Phenomena 
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such as water stress and evapotranspiration are also highly dynamic in the temporal domain, 

implying that monitoring projects in the field of precision agriculture ideally require daily (or 

even sub-daily) LST observations. As different thermal sensors operate at different temporal 

frequencies and local overpass times, data from all these sensors could be combined to yield 

highly dense timeseries of LST and ET at field scale. One of the most recent efforts in this 

direction was performed by Anderson et al. (2021), who evaluated the interoperability of 

Landsat and ECOSTRESS thermal data for producing ET image timeseries with high spatial 

(30 m) and temporal (daily) resolution. A data fusion algorithm was used to combine Landsat 

and ECOSTRESS ET retrievals at 30 m with daily 500-m retrievals utilizing TIR data from the 

Moderate Resolution Imaging Spectroradiometer (MODIS) sensor over agricultural sites of 

interest across the United States. The results highlighted the significance of the more frequent 

temporal sampling provided by ECOSTRESS, particularly in cloud-prone regions. The authors 

furthermore provide some practical guidelines with regard to ECOSTRESS data suitability 

(related to overpass time and viewing angles) for usage in this data fusion approach and stress 

the importance of simultaneous acquisition and availability of TIR and VSWIR reflectances in 

order to optimize ET retrieval based on these data. These first experiences should now be 

further tested in a range of different environmental conditions and properly validated to verify 

the robustness and transferability of the approach and underlying assumptions. 

Due to the lack of multi- and hyperspectral TIR satellites and the current limitations with regards 

to spatial and temporal resolutions as outlined in the sections above, future thermal missions 

such as LSTM (Land-Surface Temperature Monitoring; Koetz et al., 2019) offer very promising 

perspectives for the use of multi-/hyperspectral TIR for the (early) detection of environmental 

stresses from space. The currently existing broadband TIR imagers (one spectral band in the 

wavebands of 8–14 µm) are based on the assumption of a constant emissivity, which does not 

exist in nature (e.g., 0.97 for vegetation; Ullah et al., 2012). Therefore, new hyperspectral TIR 

imagers offer new methodologies that enable exact spectral emissivity retrieval and, 

consequently, more accurate surface temperature calculation. 

3  S t a t e -o f - th e - Ar t  H yp er sp ec t r a l  D a ta  

3 . 1  H y p e r s p e c t r a l  D a t a  –  C h a r a c t e r i s t i c s  

Hyperspectral (HS) data are characterized by their high range and bands of acquisition of the 

electromagnetic spectrum, compared to multispectral or RGB images. Typically, they cover 

the full spectrum between 400 and 2500 nm (VIS to SWIR) with hundreds of bands. E.g., the 

PRISMA sensor has 239 bands with a variable spectral bandwidth between 6 and 12 nm with 

a spatial resolution of 30 m. 
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HS images (HSI) can be captured by e.g., push broom, filter wheel, and liquid crystal tuneable 

filters (Fong and Wachman, 2008). The incoming light is passing through a convex grating or 

a prism which separates the light into several wavelength by entering the respective line of the 

push broom sensor (Lowe et al., 2017). Compared to line-based push brooms, snapshot 

approaches capture an entire hyperspectral two-dimensional image at once, rather than just a 

line.  

HSI allows for resolving physical, chemical, and biological components of the observed matter 

and therefore provides a kind of ‘fingerprint’ of the earth surface. Parameters and crucial 

information for agriculture, food security, soils, biodiversity, environmental degradation and 

hazards, inland and coastal waters, snow hydrology, and forestry can be derived from these 

fingerprints (Rast and Painter, 2019). HSI is a non-destructive method. Figure 1 illustrates the 

information retrieval from various surface materials, while Figure 2 shows the spectral signal 

of healthy and stressed vegetation on the hyperspectral range. 

Starting in the early 1980s with airborne and end of the 1990s with spaceborne hyperspectral 

observations, it now has become one of the key research areas in remote sensing. The Italian 

PRecursore IperSpettrale della Missione Applicativa (PRISMA) is one of the first new 

generation spaceborne sensors, which was launched in March 2019 (Loizzo et al., 2019). 

PRISMA mission is aimed to acquire data for environmental monitoring such as agriculture 

(Verrelst et al., 2021). The hyperspectral push broom sensor has 239 bands ranging from 400 

– 2 505 nm with a spectral resolution of 12 nm or higher. The satellite operates in a 615 km 

altitude sun-synchronous orbit with an inclination of 98.19°. The ground sampling distance is 

30 m. The entire PRISMA mission is developed, owned, and controlled by the Italian Space 

Agency (ASI) and is set for five years (Loizzo et al., 2019). 

Besides the already operating missions of PRISMA and the DLR`s DESIS on board of the ISS, 

several hyperspectral missions are being developed right now and planned to launch in the 

next years. For example, the ESA`s CHIME mission and the Chinese AHSI mission. Since the 

end of 2022, the German Environmental Mapping and Analysis Program (EnMAP) with a dual-

spectrometer in the range between 420 and 2450 nm with a spectral bandwidth between 5 and 

12 nm, a signal-to-noise ratio of 400:1 in the VIS-NIR and 180:1 in the SWIR bands provides 

data. The ground sampling distance of EnMAP is 30 m (Guanter et al., 2015). 
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Figure 1: Imaging spectroscopy – principle of observation (ESA Earth Observation Graphic Bureau, in Rast und Painter 
(2019). 

 

 

Figure 2: Hyperspectral range of healthy and stressed plants (Berger et al. 2020). 
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3 . 2  H y p e r s p e c t r a l  D a t a  f o r  W a t e r  S t r e s s  a n d  V e g e t a t i o n  

M o n i t o r i n g  

Since the main aim is to develop, implement, and validate algorithms and new EO data 

products addressing the water resource management using hyperspectral PRISMA data, 

state-of-the-art methods and products are reviewed and summarized in the following: 

 

Leaf water content (LWC) and canopy water content (CWC) are vital parameters to monitor 

the plant development, water status, and a balanced water supply and irrigation. Water stored 

in agricultural plants is linked to biochemical factors such as vegetation transpiration (Running 

et al., 1991) and net primary production. Especially for agricultural management in arid regions, 

accurate retrieval of the water content and vegetation traits might be crucial for mitigating water 

stress due to climate-related droughts and heat-waves (Tagliabue et al., 2022). The plant water 

content on leaf and canopy level (LWC/CWC) can be estimated from hyperspectral remote 

sensing data due to high absorptions of solar radiation by liquid water in the NIR (720–1 000 

nm) and SWIR (1 000–2 500 nm). A key parameter is the leaf equivalent water thickness 

(EWT) [gcm-2], defined as the quantity of liquid water per area of the leaf. The CWC is 

analogously defined as the quantity of liquid water per unit area of the ground surface [gm-2]. 

Around 970 nm, 1 200 nm, 1 450 nm, 1 530 nm, 1 720 nm, 1 940 nm, and 2 500 nm the 

absorption is highest, as these wavelengths are the water absorption features. Pu et al. (2003) 

achieved good results in LWC estimation with indices in the 1 200 nm area based on the 

continuum removal technique, which takes into account relative local patterns of the spectrum. 

 

By using physical-based radiative transfer models (RTM), the complex interactions between 

solar radiation and vegetation in the canopy layer can be described by simulated spectra with 

certain boundary parameters. Inversion of remote sensing acquired hyperspectral data allows 

the statistically estimation of canopy parameters using e.g., look-up tables (LUT) or machine 

learning (Verhoef & Bach, 2007). Nevertheless, the ill-posed problem by different vegetation 

traits leading to equal spectral signals of the canopy is a disadvantage of common RTM 

inversion approaches. On the other hand, RTMs are able to consider observation angles and 

the spectral response functions of the specific bands within its simulation as well as to 

anticipate future satellite data by simulations (Verhoef & Bach, 2012). Also, different crop types 

can be taken into account to simulate near-realistic spectra considering certain bio-chemical 

processes or plant stock geometries. 

 

Besides the index-based approach, various studies achieved good results using a spectrum 

matching technique (e.g., MODTRAN-based RTM ACRON) to estimate water vapor and liquid 

water (Trombetti et al., 2008). Originally developed to improve the AVIRIS water vapor 
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retrieval, the commercial ACORN model fits the measured radiance at 940 nm to an ACORN-

modeled radiance spectrum of the water vapor. Based on the Beer-Lambert Law, a 

simultaneous retrieval of liquid water and water vapor is possible due to spectral differences 

in the absorption maxima of the two (Green et al., 1993; Cheng et al., 2006). Champagne et 

al. (2003) achieved good sensitivity to EWT and CWC for most crops but crops with dense 

stems such as corn. Especially during the early stages of plant growth of wheat, only poor 

results were obtained for within-crop EWT. 

 

Several studies focused on the estimation of canopy water content using an index-based 

approach, such as the 970 nm water index (WI) developed by Penuelas (2003) for retrieval of 

relative plant water concentration (Clevers, 2008; Vohland, 2008; Clevers, 2010, Cernicharo, 

2013). On the canopy level it is proposed to use weak liquid water absorption bands around 

850–860 nm, 970 nm, and 1 240 nm. This is caused by greater penetration of radiation within 

the canopy and lower saturation at the weaker water absorption bands at these wavelengths, 

especially for a high vegetation cover (Behrens et al., 2006; Sims & Gamon, 2003; 

Sonnenschein et al., 2005). The WI overcomes the problem of saturated signals at high water 

contents and atmospheric water vapour due to strong absorptions by water in the 1450 nm 

and 1900 nm bands. However, the WI lacks generality, since different local boundary 

conditions may influence the WI significantly. Thus, it is proposed to use more spectral 

information of hyperspectral image data being available in the recent years (Wocher et al., 

2018). 

 

Besides monitoring of the plant water content, early notice of plant stress due to a shortage of 

the water supply is very important. Water stress increases with the evaporative loss of water 

and limited soil water supply, which leads to a degradation of the physiological processes and 

lower yields of the plants. 

Lowe et al. (2017) reviewed HSI analysis techniques for the detection and classification of the 

early onset of plant disease and stress. The following studies aimed to detect water stress and 

plant drought: 

Thurau et al. (2010) identified water stress or crop drought before vegetation indices or visible 

detection by experts were possible. The simplex volume maximisation (SiVM) method was 

applied, which is a data clustering technique by using references of healthy and stressed 

spectra. Römer et al. (2012) analysed drought stress in barley and corn with SiVM. In-situ HS 

data between 470–750 nm was utilized after pre-processing with k-means clustering for 

reducing and filtering valid pixels and background signals. Compared to vegetation indices 

NDVI, PRI, REIP, and CRI, the SiVM approach detected partial water stress four days earlier. 

Another study of Behmann et al. (2014) applied the ML method of support vector machine 

(SVM) for learning drought or healthy plants during training with labelled ground truth data. 
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Also, k-means clustering was used for pre-processing the HS data between 430–890 nm. 

While the approach of Behmann et al. (2014) detected drought stress on day 6, the NDVI was 

not able to detect it before day 16. 

Least squares SVM (LSSVM) were applied by Moshou et al. (2014) to detect drought stress in 

wheat plants. In contrast to the aforementioned studies, they combined spectral reflectance 

and fluorescence data of six selected wavelength from a glasshouse study site. An accuracy 

of more than 99% was achieved for the classification in stressed and healthy plants. 

Dobrowsky et al. (2005) calculated fluorescence ratio indices (FRI) for detecting plant heat and 

water stress. Wavelength affected by fluorescence such as 650–770 nm with emission peaks 

at 690 nm and 740 nm were used and normalized by non-affected wavelength like 600 nm and 

800 nm. 

Finally, Kersting et al. (2012) designed a Dirichlet aggregation regression (DAR) for barley 

drought stress prediction, that does not need any special HSI pre-processing technique and 

uses full HIS data dimensionality. 

 

3 . 2 . 1  M e t h o d / s  a n d  A l g o r i t h m s  

Tagliabue et al. (2022) used PRISMA hyperspectral data for crop trait mapping over an 

agricultural area in north-east Italy between 2020 and 2021. By applying the PROSAIL-PRO 

radiative transfer model composition coupled with a Gaussian process regression algorithm, 

the crop traits leaf chlorophyll content (LCC), leaf nitrogen content (LNC), leaf water content 

(LWC), and corresponding parameters of the canopy level (CCC, CNC, and CWC) were 

estimated. Scaling to the canopy level was performed by the leaf area index (LAI). Validation 

with ground-truth data of 2020 revealed a good performance of r2 = 0.87 for LNC, r2 = 0.67 for 

LCC, r2 = 0.63 for LWC for the leave level and slightly better performance for the canopy level: 

r2 = 0.92 for CNC, r2 = 0.82 for CCC, and r2 = 0.61 for CWC. 

The algorithm used by Tagliabue et al. (2022) is based on the simulation of 1 000 canopy 

reflectance spectra with the PROSAIL-PRO-4SAIL RTM. By applying principal component 

analysis (PCA), the dimensionality of the hyperspectral data was reduced and the best 15 

principal components were used as approximation to the original simulated spectra. The 

resulting reduced dataset of simulated spectra was then used for training of a Gaussian 

process regression (GPR) machine learning model to predict LCC, LNC, and LWC plant traits 

maps based on a LUT between 1 000 simulated spectra and the plant trait parameters. Figure 

3 summarizes the methodological approach of Tagliabue et al. (2022). 
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Figure 3: Flowchart summarizing the main steps of the plant trait retrieval workflow (Tagliabue et al. (2022). 

 

The study area of Tagliabue et al. (2022) covered 3 850 ha in the town of Jolanda di Savoia in 

north-east Italy with fields of durum and soft wheat, barley, corn, sugar beet, alfalfa, soybean, 

rice, and medicinal plants. Field measurements were carried out for ground truth data. 

The PRISMA satellite data in HDF5 format covering an entire phenological cycle were 

downloaded and pre-processed using the prismaread, pracma, and FieldSpectroscopyCC 

toolbox in R, designed by Busetto and Ranghetti (2020), Borchers (2015), and Wutzler et al. 

(2016) in order to remove artefacts and compute smooth spectra. Regions of atmospheric 

water absorption between 1 350–1 510 nm and 1 795–2 000 nm, as well as the last bands of 

the SWIR (2 320–2 500 nm) were finally removed. 

A study of Elsherbiny et al. (2021) focused on the feature selection and model development 

for CWC prediction. HS feature selection by vegetation indices, model-based features, and 

PCA were investigated using artificial neural networks (ANN), random forest (RF), and partial 

least square regression (PLSR). 128 HS images of rice crops under various laboratory-

controlled water stress levels were in-situ taken by a NIR hyperspectral imaging system. The 

authors found robust feature selections by model-based features and PCA with most 

information provided by the 1 467, 1 456, and 1 106 nm bands for CWC prediction. 

Also, Yu et al. (2017) predicted CWC based on remote HSI and RTM inversion. They used an 

UAV for data collection rather than a satellite and found that the range 900–1 100 nm mostly 

affected the CWC prediction. 
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Wocher et al. (2018) developed a physical-based retrieval approach of canopy equivalent 

water thickness (EWT-C) using in-situ hyperspectral data. EWT-C was calculated based on 

the EWT of the leaves, stalks, and fruits, respectively. Based on the Beer-Lambert law, water 

content is inversely determined from the 930–1 060 nm spectral range of the canopy 

reflectance. Winter wheat and corn spectra from 2015, 2017, and 2018 of a test site in the 

north of Munich, Germany were used. For model calibration, 50 000 PROSPECT-D and 

PROSAIL spectra with corresponding LUT were applied. Validation was performed on in-situ 

measurements of water content of leaves, stalks, and fruits, while a correlation between 

measured and modeled data of up to R2=0.72 for wheat and R2=0.86 for corn were achieved. 

For wheat, the leaves and ears contained most information, while most reliable predictions of 

corn were only based on the leaf fraction. 

Li et al. (2021) estimated EWT and fuel moisture content (FMC [%]) by new proposed spectral 

absorption indices SAI970, SAI1200, and SAI1660. SAIs are calculated between two absorption 

shoulders as the ratio of an interpolated non-absorption and the measured absorption peak 

(relative absorption depth). These indices were developed to overcome the lack of considering 

specific plant species in most other studies and indices by using individual absorption peaks 

rather than fixed wavelength. They consider the symmetry of the absorptions at 970 nm, 1 200 

nm, and 1 660 nm as well as the spectral heterogeneity of different leaves. For a study area in 

the Sichuan Province, China three species of trees were observed. Compared to other indices, 

a linear regression with the SAI1200 to EWT resulted in an optimal cross-validated R2 of 0.845. 

The RATIO index achieved comparable performance. It was also found that the EWT was not 

significantly species specific, as the performance was weaker for the individual species than 

for a pooled dataset. 

 

Verrelst et al. (2021) first used PRISMA data for canopy nitrogen content (CNC) retrieval with 

a hybrid RTM and machine learning model such as Tagliabue et al. (2022). Synthetic simulated 

spectra of the PROSPECT-PRO and SAIL RTM were used as training dataset after 

dimensionality reduction using PCA. Active learning (AL) was used to optimize the training 

dataset for a GPR machine learning model. Also, non-vegetated spectra were added to the 

training dataset for better generalisation on heterogeneous spectral images. Validation on field 

measurements revealed an accuracy with an RMSE of 3.4 gm-2 and R2 of 0.7. 

 

Gerhards et al. (2016) conducted an experiment on 60 potato plants using broadband and 

hyperspectral thermal cameras as well as VNIR/SWIR spectroscopy. Water stress was found 

in the data before visual detection by indices and it was shown that pre-visual water stress 

detection was feasible using indices depicting leaf temperature, leaf water content, and 

spectral emissivity. 
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Another review of HSI technologies and application in agriculture is given by Lu et al. (2020). 

Ahmad et al. (2021) provide a review of the crop water stress assessment using remote 

sensing data. 

3 . 2 . 1  C h a l l e n g e s  a n d  F u t u r e  D e v e l o p m e n t s  

Based on the state-of-the-art literature discussed above, specific challenges and future 

developments arise on the application of hyperspectral data for the water stress and vegetation 

monitoring. While HS applications are under intense investigation, the algorithms range from 

narrowband spectral indices to physically-based ones coupled with RTM.  

Using the capability of detecting narrow-band absorptions, HS applications offer the possibility 

of going one step further in terms of quantitative analyses. This gives a boost to both physically-

based analysis methods, that can integrate causes and offer explanations for the detected 

crop values, as well as opening up new possibilities for deep learning and machine learning 

approaches due to the data depth of HS acquisitions. Nevertheless, AI algorithms require large 

amounts of data covering several land surfaces and long time-series for training. Currently, no 

such datasets are available from satellite, and mostly field studies and airborne data are 

utilized for algorithm development, which by the nature of these expensive campaigns, limits 

both the spatial and temporal availability of the HS data.  

PRISMA and EnMAP are now a first step to providing longer time series from satellites and 

can be used in preparation for future missions like ESA’s CHIME, which will open up the 

potential for operational HS applications in agriculture.  

4  C o n c l u s i o n  

4 . 1  T h e r m a l  A l g o r i t h m s  

From the literature review presented in this document, we can conclude that many specific 

indicators and approaches have already been suggested to derive information on crop water 

stress from LST data at various spatial resolutions, all having clearly demonstrated the added 

value of thermal observations in the context of agricultural drought monitoring. The main 

challenges that remain are threefold, indicating the main research activities within ARIES to 

be performed regarding thermal data processing: 

• The low spatial and temporal resolutions of current platforms do not allow for the 

detailed monitoring crop water stress at individual field scale, limiting applications of 

thermal data in the context of precision agriculture. While waiting for new platforms to 

be launched, more research should be devoted towards combining thermal and optical 

data acquired from different platforms to yield daily LST timeseries at high spatial 
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resolution. Hence, within ARIES we specifically aim to test thermal sharpening and LST 

data fusion in the context of African agricultural systems. 

• The translation of crop water stress indicators into more comprehensive indicators on 

drought onset, drought severity and drought impact on crop/biomass production 

remains a challenging task, as this requires some additional information on e.g., crop 

type and precipitation. Within ARIES, we aim to further investigate how a thermal crop 

water stress indicator can be used to infer this type of information in a timely manner. 

One way this problem can be approached, is by linking intra-seasonal LST anomalies 

with biomass productivity anomalies. One should note however that this can only be 

accomplished in case sufficient in-situ data on biomass production can be acquired 

from the African Early Adopters. 

• In addition to these two above mentioned challenges, ARIES will also investigate the 

synergistic use of TIR and shortwave infrared reflectance information to develop a 

hybrid water stress indicator. Such approach will not only mitigate the shortcoming of 

TIR but also open up avenues towards the application of sensor synergy by using water 

sensitive information from satellite sensors. 

4 . 2  H y p e r s p e c t r a l  A l g o r i t h m s  

From the above literature review it becomes clear that HS applications are under intense 

investigation, the existing algorithms range from narrowband spectral indices to physically-

based ones coupled with RTM. Much of the work so far relies on field studies and airborne 

data. While these types of data are of great value for the development of algorithms and for 

the exploration of the potential of HS data for the detection of crop water stress, they will not 

lead to actual applications in the sense that they are applicable to a diversity of places and 

situations, simply because they lack spatial and temporal availability. The longer times series 

from PRISMA and EnMAP will open up the potential for operational HS applications in 

agriculture. Exploring this potential in diverse African agricultural and pastoral settings, ARIES 

will examine the performance of selected existing algorithms and aims adjust them accordingly 

or come up with altogether new solutions, as required to meet the needs of our African users.  
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