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1  I n t r o d u c t i o n  

EO AFRICA (African Framework for Research Innovation, Communities and 

Applications) is a research and development initiative by ESA. It focuses on building 

African-European R&D partnerships and the facilitation of the sustainable adoption of 

Earth Observation and related space technology in Africa. 

 

Within “ARIES” experimental EO analysis techniques are being developed and 

validated, addressing water management and food security in Africa.  

 

To ensure the products developed within the project serve the needs of future users 

the techniques are being developed closely together with African Early Adopters. 

These five organizations are covering east (AfriGeo, EO research group within the 

Regional Centre for Mapping of Resources for Development in Kenya & the Regional 

Centre for Mapping of Resources for Development in Kenya itself), west (AGRHYMET 

Regional Centre and AAH Action Against Hunger in Niger) and southern (Zambian 

Agricultural Knowledge and Training Centre LTD in Zambia) Africa. Thereby the 

developed algorithms and approaches can be validated, tested and evaluated in 

different geographic regions with different climatic conditions and agricultural practices. 

 

The current document aims to provide an overview of the validation methodology 

(Section 2), available validation data (Section 3) and validation results (Section 4) for 

all indicators developed within the framework of the ARIES project. 

 

2  V a l i d a t i o n  M eth o d o l o g y  

2 . 1  D i r e c t  V a l i d a t i o n  

Direct validation using field measurements will only be applicable to a few of our 

proposed products, for which measured data is available. For example, plant water 

content can be measured by the African partners by cutting a biomass sample and 

measuring the weight before and after drying to derive the difference between wet and 

dry biomass and thus the plant water content. Plant parameters that need more 

complex sensors to derive them in-situ like e.g., leaf area, are more difficult to procure, 

but can at least be compared to other leaf area products from multispectral satellite 

data.  
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2 . 2  I n d i r e c t  V a l i d a t i o n  

Many of the proposed drought indicators cannot be directly measured on the field and 

are therefore hard to validate directly through field measurements. After careful 

interpretation of the computed drought indicators, parameters such as onset, duration 

and intensity of drought can be derived and qualitatively evaluated through 

observations made by the Early Adopters and/or existing drought monitoring platforms 

operating at low spatial resolution such as FAO’s Agricultural Stress Index System. For 

this, already collected information on crop health/development, biomass production, 

yield, irrigation activities, and drought conditions will be made available for all reference 

sites of the Early adopters (Niger, Kenya, Mali, Senegal, Zambia; see Section 3.1 for 

full overview). By cross-checking temporal/spatial patterns in crop/pasture productivity 

with identified periods of ecosystem/crop water stress, we can obtain a good indication 

on the accuracy and usefulness of the developed indicators.  

 

Although the final products might be hard to validate, there are some intermediate 

steps in the product generation workflows for which a more in-depth understanding of 

the accuracy can be gained. One example includes the evaluation of the Land Surface 

Temperature (LST) sharpening step, proposed to generate the high-resolution crop 

water stress indicators. Sharpened LST data derived from Sentinel-3 can be compared 

with high resolution LST data derived from both ECOSTRESS and Landsat 8/9 data. 

Although a direct comparison and strictly quantitative validation approach would be 

hard to obtain (due to differences in overpass time between the sensors), a more 

qualitative comparison of spatial and temporal patterns might already provide sufficient 

indication of sharpening accuracies. 

2 . 3  G l o b a l  s e n s i t i v i t y  a n a l y s i s  

Aside from the (in)direct validation of the computed indicators and dedicated parts of 

the workflows used to generate the products, a global sensitivity analysis is planned to 

gain a better understanding of the primary driving factors behind the proposed 

indicators. 

Global sensitivity/uncertainty analysis of the proposed drought indices due to 

uncertainty in input variables will be calculated using SOBOL-based uncertainty 

analysis (SAlib). Uncertainty analysis will be based on an assumed systematic error 

(caused by a potential bias in the input variables) at the study sites. In a first step, 

based on the literature, the error bounds of each input variable used for individual 

drought index estimation will be defined. The error samples (perturbation) within these 

bounds will be generated using the Saltelli sampling scheme (using the python 

package SALIB53) or in Matlab using appropriate packages. Each error sample will be 

added to the input variables. Actual input variables combined with perturbed input 
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variables will be used to estimate the drought indices. The obtained range in values of 

the individual drought index based on the perturbation will be used to calculate the 

uncertainty of our newly developed drought indicators. 

2 . 4  P r o p o s e d  P r o d u c t s  a n d  E n v i s a g e d  V a l i d a t i o n  

M e t h o d s  

In Table 1 we provide an overview of the validation approaches which will be applied 

to each of the proposed indicators to be developed within ARIES. 

Table 1 Proposed products and envisaged validation methods 

Product Validation 

Method 

Validation 

Data Description 

Green leaf area Direct LAI products from other satellites 

Green leaf area Indirect In-situ measurements FLUX tower / 

biomass  

Leaf / Plant water content Direct In-situ measurements of dry and wet 

biomass 

Ecosystem water stress 

(70m) 

Indirect Comparison with biomass estimates 

derived from (1) field surveys and (2) low 

resolution satellite data analysis 

High resolution crop 

water stress (10 – 20m) 

Indirect High resolution thermal satellite data to 

validate intermediate LST estimates. 

In-situ field-scale observations on 

biomass production, yield and crop water 

stress to validate the final crop water 

stress product. 

Drought susceptible area Indirect In-situ field-scale observations on 

biomass production, yield and crop water 

stress 

Canopy water content 

(30m) 

Direct In-situ measurements of dry and wet 

biomass 

Canopy water content 

(30m) 

Indirect Intermediate steps in the product 

generation (green leaf area and leaf 

water content) can be validated through 

direct and indirect validation methods 
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3  V a l i d a t i o n  d a ta  

3 . 1  I n - s i t u  d a t a  

All associated Early Adopters either conduct or have access to agricultural tests sites 

(see Figure 1) in which they gather data relevant for validation of the planned 

innovative EO algorithms and products.  

An overview of currently available in-situ reference data is presented in Table 2. The 

ground truth data was already collected in recent years and surveying continues so 

that validation data is available for the entire period covered by the project. This also 

ensures that in case no further data acquisitions of ECOSTRESS data can be 

conducted for the areas of interest during the project phase, historic data of recent 

years can be used to validate the EO algorithms and products. 

 

 

 

 

 

 

 

 

Figure 1 ARIES test sites in southern and western Africa 
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Table 2 Available reference data sets for the African test sites 

 

With more validation data available for some of the test sites and less for others, 

incremental algorithm and product development and the initial validation will focus on 

certain test sites. The final products can then additionally be tested in one or several 

sites, that have not been used in development. This will provide a measure of 

transferability.  

Organization Country Data available Available variables Years 

ACF 

 

Mali Data on 

irrigated 

croplands 

Crop type, crop damage, 

crop development anomaly 

and qualitative indication of 

crop yield 

2023 

Senegal Field campaigns 

conducted by 

CSE (Centre 

Suivi 

Ecologique), 61 

active sites 

Crop type; Crop health; 

Drought conditions; Pasture 

productivity 

Since 

1988, 

ongoing 

AGRHYMET Niger Weather station 

data and field 

surveys, 

including 

multispectral 

UAV campaigns 

Biomass availability in 

pastoral systems, soil 

moisture, temperature, wind 

speed, radiation 

Ongoing 

for many 

years. 

Period of 

interest 

(2018 – 

2022) is 

covered. 

AKTC Zambia Weather station 

data, Data on 

drylands 

Wet biomass, plant 

development (height, 

maturity, population, pests), 

Drought score, Soil type and 

chemistry 

2022 - 

2023 

RCMRD Kenya Data collected 

at several sites 

throughout 

Kenya 

Unknown but stated to 

support crop mapping and 

mapping of drought 

conditions  
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3 . 2  O t h e r  d a t a  s o u r c e s  

Low resolution satellite products, such as vegetation products from the Copernicus 

Global Land Service (e.g., dry matter productivity, LAI at 300 m resolution) and 

biomass/evapotranspiration products from FAO’s WaPOR data portal (100 – 250 m) 

can also be used for validation in test sites with little or unsuitable in-situ data available, 

e.g., validation of green leaf area in pastoral test sites. Due to the products relatively 

coarse spatial resolution, especially in comparison with the products we are aiming to 

develop, their main use will be as an indicator for the temporal accuracy of our results. 

This will allow us to assess at least some aspects of the quality and usefulness of our 

products even in locations with little validation data available.  

 

3 . 2 . 1  S o i l  M o i s t u r e  

The International Soil Moisture Network (ISMN) is a collaborative initiative focussed on 

enhancing our understanding of soil moisture dynamics on a global scale. This network 

unites researchers, institutions, and organizations from around the world to collect, 

share, and analyze soil moisture data obtained from various sources and 

measurement techniques. By merging multiple networks, the ISMN facilitates 

comprehensive investigations into soil moisture variability across different spatial and 

temporal scales. Furthermore, the ISMN serves as a valuable resource for various 

stakeholders, including scientists, policymakers, and agricultural practitioners. By 

providing access to a wealth of soil moisture data and associated metadata, the 

network supports informed decision-making processes related to water resource 

management, agricultural planning, and climate adaptation strategies. 

 

In Africa, the ISMN offers ground measurements from six networks, namely AMMA-

CATCH, COSMOS, DAHRA, PBO_H2O, SD_DEM, and TAHMO. These networks 

collectively comprise 92 sites representing diverse climate and land cover types. Since 

ECOSTRESS data becomes available from July 2018, 36 sites has been utilized to 

illustrate the correlation between soil moisture and drought indices. 
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Figure 2 The ISMN soil moisture site distribution in Africa 

 

4  V a l i d a t i o n  R esu l t s  

4 . 1  T h e r m a l  D r o u g h t  I n d i c e s  

A correlation coefficient (cc) analysis was conducted across all ground sites to 

examine the relationship between ISMN SM and various drought indices. The 

corresponding statistical results are presented in Table 3. The median cc serves as 

a measure of overall performance, while the standard deviation (STD) is provided to 

account for variations in performance across different sites at 8-day and monthly 

scales. 

Table 3 Median value at different sites and overall standard deviation (STD) statistics of Correlation coefficient (cc) 

between in-situ SM and drought indices. 

Index 8-day monthly 

cc STD cc STD 

SMAP 0.85 0.07 0.88 0.11 

SWI 0.88 0.12 0.91 0.21 

KBDI -0.47 0.17 -0.55 0.24 

SDCI 0.40 0.15 0.44 0.24 

STR 0.60 0.21 0.61 0.25 

ESI 0.49 0.16 0.53 0.19 

 

Table 3 reveals that SMAP and SWI exhibit the highest median correlation 

coefficients (cc) close to 0.9, with SMAP displaying significantly lower STD, signifying 

a more consistent performance across diverse conditions compared to ESA SWI. 

Notably, all meteorological and remote sensing drought indices fall short in capturing 



 

 

D06 – Validation Methodology 

 
 

 

 

EO Africa // ARIES 

 

 

 

Page 16  

 

the temporal variability of SM when compared to MW SM products. The cc values 

hover around 0.5, with a corresponding STD of 0.17. Notably, STR outperforms 

others, and post time upscaling, KBDI and STR demonstrate similar performance. 

ESI, with considerably fewer data points, exhibits a performance gap possibly 

attributed to data scarcity.  

After removing the seasonality to detect the anomalous SM signals, the temporal 

variability of different drought index and soil moisture anomalies are shown in Figure 

2. 

 

Figure 2 Drought indices captured the soil moisture anomalies (marked as blue) 

 

In comparison, ECOSTRESS ESI shows the ability to map the drought stress at 

local scales. The Mali site (Lat: 16.6730 °, Long: -3.0448 °) was selected for local 

mapping analysis. The land cover type map (Figure 3) indicates the high 

heterogeneity around the site. The land cover type data is from Copernicus Global 

Land Cover Layers (CGLS-LC100) with 100m spatial resolution. 

 

 

Figure 3 Land cover types surrounding the Mali site, and the spatial window size is 21 km. 

 

The monthly ESI is subsequently mapped, revealing distinct temporal variations 

(Figure 4). Spatial patterns align closely with land cover characteristics, notably 
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indicating lower drought stress in wetlands during October in comparison to grassland 

and barren land (Fig. 4d). Figure 4 underscores the potential utility of ESI for localized 

drought stress monitoring. 

 

 

 

Figure 4 Monthly ESI maps at the Mali site (Lat: 16.6730 °, Long: -3.0448 °) in 2019 (a) July, (b) August, (c) September, 

and (d) October. 

 

Even when averaging ESI images within a month, the ESI for July (Figure 4) exhibits 

a distinct data gap. This underscores the imperative to reconstruct the LST data, prior 

to its application to fully leverage drought indices derived from high-resolution remote 

sensing. The image comparison in Figure 5 with other indices demonstrates that high-

resolution thermal data shows its better performance in mapping drought at local 

scales. In addition, due to the short span and limited sampling frequency of 

ECOSTRES data, detrending cannot be done, thus the seasonal cycle may also impact 

the results. 

  

Figure 5 Local drought mapping using (a) ECOSTRESS ESI, (2) MODIS STR, and (3) MODIS NDWI 

 

The overall recommendation of different drought indices is summarized in Table 4. 

(a) (b) 

(c) (d) 
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Table 4 Application recommendation of each drought index 

 NASA 

SMAP soil 

moisture 

ESA soil 

water index 

(SWI) 

KBDI MODIS 

STR 

MODIS 

SDCI 

ECOSTRESS ESI 

Resolution 11 km 10 km 10 km 500 m > 500 m 70 m 

Data gaps none none none low low high 

Forecasting mid low high low mid low 

SM (dry) 

performance 

great great great good bad good 

SM (wet) 

performance 

great good bad bad bad bad 

SM anomaly great good good bad good - 

Notes   drying 

season 

arid delay  

Input microwave microwave Rainfall, air 

temperature 

SWIR NDVI, 

rainfall, 

LST 

radiation, 

temperature, 

humidity … 

4 . 2  V a l i d a t i o n  o f  h i g h - r e s o l u t i o n  c r o p  w a t e r  s t r e s s  

i n d i c a t o r  ( 2 0  m )  

 

This section is divided into three parts. As this indicator is primarily based on a data 

sharpening procedure, converting low-resolution Sentinel-3 (S3) thermal data to a 

high-resolution land surface temperature (LST) product, the first section focusses on 

summarizing previous validation efforts related to thermal data sharpening. Within this 

project we have defined a procedure to improve the accuracy of the resulting 

sharpened LST product through direct comparison with high-resolution LST data from 

ECOSTRESS. The second section therefore focusses on highlighting the benefits of 

this two-stage correction procedure. Finally, in the third section, we focus on validation 

of the final crop water stress product based on in-situ reference data. First, the thermal 

sharpening validation section discusses the validation of the thermal sharpener, since 

it is the main input for our crop water stress indicator. The thermal sharpener is 

validated in literature, both theoretically and with in-situ data. Second, the cross-

validation section, validates the thermal sharpened LST, the cross-calibrated LST and 

the directionally corrected LST by comparing S3 HR LST with ECOSTRESS LST. 
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4 . 2 . 1  T h e r m a l  s h a r p e n i n g  v a l i d a t i o n  

The thermal sharpener as used in this study has been previously validated in literature, 

both theoretically and with in-situ data. Guzinski & Nieto (2019) evaluated the feasibility 

of the proposed Sen-ET algorithm based on low-resolution thermal MODIS (1000 m) 

data and high-resolution VISNIR Landsat data. A comparison between high-resolution 

Landsat thermal data and MODIS sharpened thermal data showed similar spatial and 

temporal patterns, yet clearly lower LST contrast of the sharpened imagery compared 

to the high-resolution reference data. 

Gao et al., (2012) used high-resolution Landsat LST as reference data and created 

low-resolution LST after aggregation of the reference data. The validation procedure 

sharpened the low-resolution LST with high-resolution reflectance bands and 

compared it with the reference data for three areas: a site with rainfed agriculture, a 

site with irrigated agriculture, and a site with natural vegetation and complex terrain. 

Table 5 shows the resulting mean absolute error for the three sites and different 

sharpening ratios. The utilization of the sharpening procedure adds additional 

uncertainty. The additional challenges include geo-referencing precision, different 

spectral bands than in the validation, differences in acquisition times, and variations in 

data quality. Important to note is that this particular validation study recommended a 

maximum sharpening ratio of 16, whereas sharpening S3 to S2 resolution corresponds 

to a sharpening ratio of 50. 

 

Table 5 Mean absolute error (MAE) [K] of thermal sharpening methodology for three test sites and sharpening ratios 

from 2 to 16. The rainfed site shows the MAE range for three observations (Gao et al., 2012). 

Sharpening ratio Rainfed site Irrigated site Complex site 

2 0.35-0.56 / 0.78 

4 0.48-0.78 0.58 1.22 

8 0.59-1.00 0.67 1.67 

16 0.65-1.24 0.80 / 

 

Sanchez et al. (2024) evaluated the performance of two sharpening methods, including 

the Data Mining Sharpener (DMS) used here, for the S3-S2 combination. The research 

reported an overall accuracy of 2.6 K for thermally sharpened LST from S2 and S3 

data for croplands. Furthermore, the earlier observed reduced thermal range in 

thermally sharpened images was confirmed. More specifically, the LST of bare soil, 

which is typically high, is underestimated whereas the LST of vegetated areas, which 

is typically low, is overestimated. Additionally, the research observes an overall LST 

overestimation and explains this by pointing to the wrongly assigned land covers and 
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corresponding coefficients in the split-window algorithm of the Sentinel-3 LST retrieval 

algorithm.  

4 . 2 . 2  C r o s s - c a l i b r a t i o n  a n d  d i r e c t i o n a l i t y  c o r r e c t i o n  

As specified in the ATBD's, after thermal sharpening the high-resolution LST product 

derived from Sentinel-3 is going through a two-phase correction procedure to improve 

its overall quality: first, a cross-calibration with ECOSTRESS LST data takes place, 

followed by an explicit correction of directionality effects. This section validates the 

sharpened LST, the cross-calibrated LST and the directionally corrected LST through 

direct comparison with quasi-simultaneous high-resolution ECOSTRESS LST, as such 

showing the added value of the designed LST correction procedure. 

 

 

• Methodology  

During cross-calibration, the available quasi-simultaneous Sentinel-

3/ECOSTRESS observation pairs are split into two fractions: we use 80% of 

observations to train the cross-calibration and the directional model, and the 

remaining 20% of the observations to test the performance of the algorithm. 

Note that we use the 80%-20% for the observation pairs, not the number of 

pixels. To get stable results, 100 random training and test sets are generated 

from the observation pairs pool and validation is executed 100 times. 

• Data  

This cross-validation exercise has been performed on Flanders, Belgium, for a 

period of three years covering 2019-2021. Flanders corresponds to three S2 

tiles: 31UDS, 31UES and 31UFS. For this period 42 Sentinel-3/ECOSTRESS 

observation pairs were available. The region of Flanders has been selected due 

to ample availability of cloud-free Sentinel-3 and ECOSTRESS data. 

• Results 

Figure 6 and 7 show the performance for each test-training set by showing the 

Mean Error (ME) and Mean Absolute Error (MAE), respectively. The ME shows 

a consistent LST overestimation for the original sharpened S3 data (S3 HR LST) 

and a consistent underestimation of the cross-calibrated version (S3 HR LST*). 

These results are in line with the expectations, since the split-window algorithm 

for the low-resolution S3 LST at 1000 meters overestimates temperatures, 

whereas S3 HR LST* still contains directional effects that generally decrease 

observed LST. This figure illustrates the strength of the methodology to remove 
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general bias in sharpened LST. The removal of this bias is of key importance 

for the development of the crop water stress indicator, which is not allowed to 

vary from day to day due to trends resulting from viewing geometry. While the 

Mean Error (ME) highlights the model’s bias, the Mean Absolute Error (MAE) is 

equally crucial. Unlike ME, MAE reflects the overall error magnitude, 

irrespective of general bias. Thus, examining the MAE in Figure 6 and Figure 7 

offers a more complete view of the model’s performance and the methodology’s 

effectiveness. The figure shows that the cross-calibration improves the original 

MAE from 2.11 K up to 1.80 K. After directional corrections, the MAE further 

improves to 1.62K. Overall, the proposed methodology decreases the MAE with 

0.49 K, which is a 23% accuracy increase compared to the original sharpened 

LST product. Further improvements are expected by using a pixel-specific 

directional correction instead of the current generic correction.  

 

Figure 6 LST Mean Error (ME) of Sentinel-3 high-resolution LST compared to ECOSTRESS LST in a test set, for the 
original data (red), the cross-calibrated data (green) and the directionally corrected data (also cross-calibrated). The 

figure shows the results for 100 training-test sets based on all image pairs for Flanders from 2019-2022. Furthermore, 
the figure includes the mean and standard deviation of all test set MEs . 

 



 

 

D06 – Validation Methodology 

 
 

 

 

EO Africa // ARIES 

 

 

 

Page 22  

 

 

Figure 7 LST Mean Absolute Error (MAE) of the Sentinel-3 high-resolution LST compared to ECOSTRESS LST in a test 
set, for the original data, the cross-calibrated data and the directionally corrected data (also cross-calibrated). The 

figure shows the results for 100 training-test sets based on all image pairs for Flanders from 2019-2022. Furthermore, 
the figure includes the mean and standard deviation of all test set MAEs . 

4 . 2 . 3  V a l i d a t i o n  o f  c r o p  w a t e r  s t r e s s  i n d i c a t o r  

The crop water stress indicator has been computed over the test sites located in 

Zambia (AKTC) and Mali (ACF). Some results for Zambia are summarized in Figure 8. 

Three important observations can be made based on this figure, confirming the LST-

Ta indicator is working as intended and is indeed sensitive to crop water stress: 

1) The LST-Ta indicator is highly sensitive to land cover, showing high values when the 

field is bare and low values when covered by a crop. This highlights the need to 

always account for land cover when interpreting this indicator (hence the inclusion of 

NDVI in the figure). 

2) As can be seen in the left panel of the figure, LST-Ta indicator drops significantly 

following a major precipitation event, after which it slowly increases again. This is 

completely expected behaviour in a hot climate where water stress kicks in relatively 

quickly following a precipitation event. 

3) During the growing season, the LST-Ta indicator shows distinctive peaks on the 

rainfed site, which are not present on the irrigated plot, indicating more crop water 

stress in the non-irrigated site, which is completely in line with expectations. This 

shows indeed that this specific indicator is sensitive to capturing the impact of 

irrigation practices on crop water stress, and potentially, productivity. 
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Figure 8 Crop water stress indicator (LST-Ta in red) and NDVI (in green) time series for two specific locations at the 
AKTC test site in Zambia during the main agricultural season in 2024: (left) a large pivot, representing 
irrigated agricultural fields, (right) a typical example of non-irrigated agricultural field. Blue lines represent 
major precipitation events, based on CHIRPS rainfall data extracted from the FAO WaPOR data portal. The 
orange circle in both figures highlight key difference in terms of crop water stress between the two sites. 

When applying the crop water stress indicator to the Mali test sites, the limitations of 

the approach become apparent. As shown in Figure 9, left panel, for some fields the 

crop water stress indicator does make sense, showing relatively low values during the 

growing season, high values during periods of bare soil and a peak in crop water stress 

at the start of the growing season, matching the reported severity of drought for that 

particular field. On the other hand, the right panel of the same figure shows an example 

of a field where the derived crop water stress indicator shows no or limited correlation 

with land cover (as represented by the NDVI time series). This is a clear case where 

the results of the LST sharpening procedure cannot be trusted and final results should 

be interpreted with great care. This can be explained by considering the broader 

context of the specific agricultural field (Figure 10). Most of the area consists of desert, 

with only limited agricultural activities. In order for the LST sharpening approach to 

work, one needs a good amount of relatively homogeneous 1km x 1km pixels, 

especially over agricultural areas. On the Mali test site, this is clearly not the case, 

leading to unstable and unreliable high-resolution LST estimates. As said, this clearly 

implies the method cannot readily be applied anywhere. Future, higher spatial 

resolution thermal sensors will play a key role in alleviating this current limitation. 
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Figure 9 Crop water stress indicator (LST-Ta in red) and NDVI (in green) time series for two specific locations at the 
ACF test sites in Mali during the main agricultural season in 2024: (left) an agricultural field which is known 
to have faced severe drought at the start of the season and has been partially destroyed by wildlife, (right) 
an agricultural field that has faced only mild consequences from drought. 

 

Figure 10 True color RGB image of the surrounding landscape for the Mali test site. The red dot identifies the specific 
field for which the LST-Ta and NDVI time series are shown in Figure 9, right panel. 

4 . 3  H y p e r s p e c t r a l  P r o d u c t  V a l i d a t i o n  

All initial product calculations (LAI, CWC, LWC) were done at the AKTC test site in 

Zambia, due the high number of EnMap and PRISMA data takes available (Figure 11 

and Figure 12) and the good cooperation established with the site manager early on in 

the project. In the end, it was however not possible to acquire any quantitative in-situ 

data suitable for the validation of the calculated products. This was mainly due to timing 

issues and a mismatch in spatial resolution between the available in-situ data and the 

satellite data. The available in-situ data from small dryland plots (< 2 ha) was collected 

during the 2022/2023 rainy season, during which hyperspectral data acquisition for the 

test site was not yet established. Therefore, we opted for the use of external validation 
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data for the LAI product and sightly changed the calculation procedure of the plant 

water products. Instead of calculating the CWC from the inversely determined LWC 

and LAI, we used an established and calibrated method to calculate CWC (see 

D07_ATBD_PS_I), that has been validated before (Wocher et al. 2018).  

 

Figure 11 Available hyperspectral PRISMA and EnMap data takes at AKTC test site during 2023 

 

 

Figure 12 Available hyperspectral PRISMA and EnMap data takes at AKTC test site as of August 2024 

 

4 . 3 . 1  V a l i d a t i o n  o f  L e a f  A r e a  I n d e x  

LAI values were determined across the test site via model inversion of the PROSAIL 

model available within the EnMap toolbox. This was done for all available EnMap and 

PRISMA data takes (selected results in Figure 13) and a timeline of LAI results was 

created for several pixels within the irrigation pivots where wheat was being cultivated 

during the 2023 dry season (Figure 14). The area surrounding point 4 was not planted 

in 2023 (see Figure 13 Leaf Area Index results calculated from PRISMA data acquired 

during the 2023 dry season at AKTC Zambia.  
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Figure 13 Leaf Area Index results calculated from PRISMA data acquired during the 2023 dry season at AKTC Zambia. 

 

 

Figure 14 Leaf Area Index values calculated from PRISMA and EnMap data. Timeline at selected pixels within AKTC’s 
irrigation pivots. Numbers correspond with locations indicated in Figure 13. 
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Figure 15 Leaf Area Index values calculated from PRISMA and EnMap data. Timeline at selected pixels within AKTC’s 
irrigation pivots. Numbers correspond with locations indicated in Figure 13. The season is not over yet, 

hence LAI values stop in August. Between April and June there were no hyperspectral data takes. 

 

As no quantitative leaf area or biomass in-situ data was available for the 2023 growing 

season, validation was based on mean LAI value results from both pivots, calculated 

from Sentinel-2 data from the last 3 years (2021 – 2023). Wheat has been grown on 

(parts of) the pivots in each of these years. LAI values were calculated for the pivots 

from Sentinel-2 multispectral data using a well-established method, which Vista has 

developed outside of this project and is using for its operational services, based on the 

SLC radiative transfer model (Verhoef & Bach 2007). LAI values were derived in a 

spatially distributed manner for all available high-quality Sentinel-2 data takes during 

the growing season for each of the years. Mean LAI values were calculated across all 

pixels inside the two irrigated pivots for each of the available dates. The values were 

then interpolated, so that one mean LAI value became available for each calendar day 

for comparison with the 2023 hyperspectral results (Figure 16). 
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Figure 16 Comparison between mean LAI (2021-2023, across all pixels) calculated from Sentinel-2 data and LAI values 
from selected pixels calculated from hyperspectral data during the 2023 wheat growing season. 

 

The Sentinel-2 based spatially distributed LAI product has been in use at AKTC for 

day-to-day farm management and informed decision making (e.g. with regards to 

irrigation amount and timing and determination of harvest time) for several years. The 

comparison (Figure 16) shows that while LAI is highly diverse across space - this 

variability is caused amongst other factors by planting dates, soil characteristics and 

management practice – the overall development of LAI throughout the growing season 

is similar between the mean Sentinel-2 LAI and the hyperspectral LAIs observed during 

the 2023 growing season.  

An expert Interview with Mr Anschütz and Leslie De Jager from AKTC was conducted 

on 3rd June 2024. They could explain the differences in spatial development in the 

pivots seen in the LAIs in the 2023 time-series (Figure 13) as follows:  

 

- At sample point 4 different varieties of potatoes were planted but didn’t 

germinate 

- Situation at end of May:  

o small pivot (point 5) was uniformly panted but there are differences in 

cultivation on the pivot 

o big pivot: not uniformly planted, differences in cultivation 
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o Differences might be caused by differences in cultivation in previous 

year. In winter: soy (cover crop) 

- situation in June:  

o at sampling point 1: different variety, shorter but higher population 

o at sampling point 4: potatoes didn’t germinate 

o sampling point 2 can be explained by germination differences 

In general, there are some soil differences and germination differences of at least 10 

days caused by disruptions in the farming practice (e.g. break downs). Planting dates 

also vary from year. This also needs to be acknowledged when comparing results from 

different years, so the heterogeneities seen in the 2024 data are also expected. 

While no validation as such is planned in the Mali test-site for the hyperspectral 

products, the time-series was also calculated there and is shown in the following 

figures. Difference in LAI development are visible also in this drier area. Overall, the 

LAI values are smaller than in the irrigated fields in Zambia.  

 

Figure 17 Leaf Area Index results calculated from PRISMA and EnMap data acquired during 2024 at the Mali test-site 
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Figure 18 Leaf Area Index values calculated from PRISMA and EnMap data. Timeline at selected pixels at the Mali test-
site. Numbers correspond with locations indicated in Figure 17. 

 

4 . 3 . 1  V a l i d a t i o n  o f  C a n o p y  a n d  L e a f  W a t e r  C o n t e n t  

Canopy Water Content was calculated using the Plant Water Retrieval (PWR) Tool 

available within the EnMap toolbox (Figure 19). 
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Figure 19 Canopy Water Content results calculated from PRISMA data acquired during the 2023 dry season at AKTC 
Zambia. 

 

The method described in more detail in D07_ATBD_PS_I was developed by Wocher 

et al. 2018. Included in its implementation within the EnMap toolbox is a calibration 

factor which has been validated through performance assessment. The PWR tool has 

proven its ability to accurately predict plant water conditions as found in samples taken 

at winter wheat and corn test sites in Bavaria. The transferability of the method was 

also shown (Wocher et al. 2018). While validation with in-situ data still helps to prove 

the robustness of results, it is not strictly necessary. The method was chosen with 

regards to the unavailability of quantitative plant water data at the AKTC test site. 

 

Leaf Water Content was then derived by combining LAI and CWC results (Figure 20 

Leaf Water Content calculated from CWC and LAI derived from PRISMA data 

(31.07.2023)). As the intermediate products have already been validated or do not 

need validation, no separate validation has been conducted for LWC. 
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Figure 20 Leaf Water Content calculated from CWC and LAI derived from PRISMA data (31.07.2023) 
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While no validation as such is planned in the Mali test-site for the hyperspectral 

products, the time-series was also calculated there and is shown in the following figure. 

 

Figure 21 Canopy Water Content results calculated from PRISMA and EnMap data acquired in 2024 at the Mali test-site 

 

5  C o n c l u s i o n  

One of the main challenges for the validation of the project results was the relatively 

sparse availability especially of quantitative in-situ validation data. We have thus in 

some cases resorted to external validation data (e.g. Soil Moisture Data from the 

International Soil Moisture Network, LAI data calculated from Sentinel-2 multispectral 

data). In other cases, our methods were chosen to include approaches that have been 

validated before (e.g. thermal sharpening and plant water retrieval).  

List performed a sensitivity analysis of agricultural drought indices at 8-day and 

monthly scales, encompassing remote sensing indices such as ECOSTRESS ESI, 

SMAP SM, ESA SWI, STR, SDCI, and meteorological KBDI. In-situ measurements 

from the International Soil Moisture Network (ISMN) were employed as a reference to 
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understand the sensitivity of these indices to soil moisture variability. Results reveal 

SMAP's greater performance, followed by SWI. STR correlates with SM but includes 

scattered values. ECOSTRESS ESI effectively captures the spatial nuances of local 

drought stress; however, it is limited by temporal sampling frequency, impeding the 

variability analysis at intra-monthly scales. No single index universally excels, 

underscoring the need for further refinement. Advocating for a high-resolution RS data-

driven drought index, this study provides insights for future mission applications (e.g., 

TRISHNA, SBG, LSTM), offering a roadmap for enhanced drought monitoring in Africa. 

The products develop by Vito (Crop Water Stress Indicator) and Vista (LAI and 

CWC/LWC) would benefit from an improved availability of in-situ validation data, but in 

an expert interview with AKTC, the differences in development of the crops could be 

explained by the user. 
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