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I n t r o d u c t i o n  

This document describes the theoretical algorithm baseline for the deduction of the drought 

and water parameters developed in ARIES. The scientific and mathematical theory behind the 

algorithms is detailed, so that users can gain an informed understanding of the technical and 

scientific considerations underlying the products, ranging from the scientific description to 

mathematical definitions of the algorithms as well as references to literature underpinning the 

performance of these algorithms. 

The following algorithms are described:  

• Thermal Algorithms:  

o Drought Index and comparable products 

o High-resolution crop water stress (20m) 

• Hyperspectral Algorithms:  

o Leaf Area Index Derivation via radiative transfer model inversion 

o Leaf Water Derivation via radiative transfer model inversion 

o Plant Water Retrieval via dedicated plant water absorption index 

 

1  T h e r ma l  D a ta  P r o d u ct s  

1 . 1  D r o u g h t  I n d e x  

Drought is characterized by a prolonged deficiency in water supply, affecting various aspects 

such as the atmosphere, soil, streamflow, groundwater, and economic activities 

(AghaKouchak et al., 2015). It poses substantial challenges to socioeconomic systems, 

leading to issues like food security, water resource inequality, and environmental degradation, 

including desertification and debris flow. Africa emerges as a focal point for drought-induced 

global change, with frequent hazards adversely affecting biodiversity and natural resource 

sustainability (Hadebe et al., 2017). The increasing frequency of drought exacerbates these 
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challenges, resulting in tropical wildfires, heatwaves, and affecting approximately 20% of the 

population with hunger (Otekunrin et al., 2020). Urgent efforts are needed for effective drought 

monitoring in Africa. Diverse drought indices, reliant on meteorological variables and remote 

sensing (RS) data, have been developed.  

 

Regional applicability of meteorological drought indices faces challenges due to the limited 

coverage of ground-based monitoring stations. In comparison, satellite RS offers a promising 

alternative by leveraging indirect indicators such as green vegetation dynamics and land 

surface temperature (LST) variations. Nevertheless, RS-based indices encounter limitations 

such as infrequent temporal sampling and cloud cover (Jia et al., 2022). Furthermore, they 

often lack clear physical interpretations essential for effective water resource management and 

policy development. Soil moisture RS products are available on a daily basis, whereas they 

are constrained by coarse spatial resolutions (> 9 km), restricting their effectiveness for 

localized irrigation planning. Additionally, the validation of existing drought indices, remains 

insufficient across diverse landscapes and climatic conditions in Africa. Addressing these gaps 

is crucial for enhancing the reliability and applicability of drought monitoring systems across 

the region. 

 

Therefore, developing drought indices that incorporate thermal and optical data from advanced 

remote sensing (RS) sensors will significantly improve our ability to monitor agricultural drought 

at the local level. The ECOsystem Spaceborne Thermal Radiometer Experiment on Space 

Station (ECOSTRESS) was deployed aboard the International Space Station (ISS) on June 

29, 2018 (Fisher et al., 2020). It Serves as a pioneering mission for forthcoming Thermal 

Infrared (TIR) endeavors, capturing thermal imagery across five bands spanning 8 to 12.5 μm. 

With its advanced capabilities, it achieves high spatio-temporal resolution, obtaining TIR data 

at various times throughout the day. Through resampling at the nadir, ECOSTRESS achieves 

a pixel size of approximately 70 × 70 m, facilitating the retrieval of evapotranspiration (ET) data 

at fine spatial scales, including small ecosystem patches and individual agricultural fields. The 

revisit time averages between 1 to 5 days, significantly surpassing previous high resolution 

thermal missions (e.g., Landsat). In regions with high latitude where the ISS orbital path varies, 

observation frequency can increase, allowing multiple observations within a single day. This 

frequent observation capability is particularly advantageous for assessing agricultural heat and 
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water stress (Jia et al., 2024). Therefore, within this project, thermal drought indices will be 

utilized using ECOSTRESS data alongside other high-resolution optical data across Africa.  

 

1 . 1 . 1  A l g o r i t h m  O v e r v i e w  

Evaporative Stress Index (ESI), calculated based on ECOsystem Spaceborne Thermal 

Radiometer Experiment on Space Station (ECOSTRESS) evapotranspiration product, is 

proposed as the primary thermal drought index in the project. In addition, several 

meteorological and agricultural drought indices are employed for the evaluation and inter-

comparison. 

 

The Keetch-Byram Drought Index (KBDI), calculated using maximum daily temperature and 

total daily precipitation from the fifth-generation European Centre for Medium-Range Weather 

Forecasts atmospheric reanalysis v5 (ERA5), serves as a meteorological drought index. 

Shortwave Infrared Transformed Reflectance (STR), derived from Moderate Resolution 

Imaging Spectroradiometer (MODIS) shortwave infrared reflectance sensitive to water content, 

is used as a representative RS-based index. Additionally, a hybrid Scaled Drought Condition 

Index (SDCI) is involved, calculated using normalized MODIS LST, Normalized Difference 

Vegetation Index (NDVI), and precipitation from ERA5. To better validate the drought indices, 

in-situ SM from 36 sites within the International Soil Moisture Network (ISMN) in Africa serves 

as the ground truth for agricultural drought signals. The drought indices were implemented at 

8-day and monthly scales. 

 

1 . 1 . 2  A l g o r i t h m  D e s c r i p t i o n  

1.1.2.1 Scientific Theory 

The ECOSTRESS mission delivers the ET product globally and in near real-time.. ET 

encompasses the combined processes of water vapor evaporation from various surfaces of 

the Earth, including soil and plant surfaces, as well as transpiration from plants, representing 

the total water loss from the Earth's land surface to the atmosphere. It plays a pivotal role in 

the water cycle, influencing both regional and global climate patterns, as well as agricultural 

productivity and water resource management. Reference Evapotranspiration (ET0) indicates 
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the potential evapotranspiration under optimal surface wetness conditions. The Evaporative 

Stress Index (ESI), computed as the ratio of ET to ET0, serves as a widely used agricultural 

drought index, highlighting areas with anomalously high or low rates of water use. 

 

The KBDI is a widely used drought index (Alexander, 1990) for assessing fire potential in 

forested or grassland areas. Developed by John Keetch and George Byram in the 1960s, KBDI 

integrates rainfall and soil moisture data over a specific period to quantify the dryness of the 

soil. It is based on the premise that the drier the soil, the more susceptible it is to ignition and 

rapid spread of wildfires. KBDI values range from 0 to 800 or higher, with higher values 

indicating drier conditions and increased fire danger. KBDI is valuable for wildfire management 

agencies, land managers, and policymakers to assess fire risk and allocate resources for fire 

prevention and suppression efforts. 

 

STR is an effective drought index derived from the shortwave infrared (SWIR) bands (Yue et 

al., 2019). STR is particularly sensitive to variations in surface water content, making it a 

valuable tool for monitoring changes in soil moisture levels, vegetation health, and hydrological 

processes. This information is crucial for various applications, including drought monitoring, 

agricultural management, and water resource assessment. 

 

The Hybrid Scaled Drought Condition Index (SDCI) (Rhee et al., 2010) is a comprehensive 

metric used for assessing drought conditions by integrating multiple environmental variables. 

Normalized LST provides insights into surface temperature variations, which can indicate 

drought stress in vegetation and soil moisture levels. NDVI, on the other hand, measures the 

health and vigor of vegetation, offering an indication of vegetation response to moisture 

availability. Finally, precipitation data from ERA5 captures the actual amount of rainfall, a 

critical factor in assessing drought severity. By combining these variables into a single index, 

the SDCI offers a holistic view of drought conditions, considering both temperature-driven 

stress and vegetation response alongside precipitation deficits. This hybrid approach 

enhances the accuracy and reliability of drought monitoring, enabling stakeholders to better 

understand and manage drought impacts on ecosystems, agriculture, and water resources. 
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1.1.2.2 Mathematical Theory 

The equation for ESI calculation is represented mathematically as Eq. 1: 

𝐸𝑆𝐼 =  
𝐸𝑇

𝐸𝑇0
, (1) 

where ET represents the evapotranspiration, ET0 is the reference evapotranspiration. 

 

The KBDI (Brown et al., 2021), initially designed for daily fire risk monitoring, is calculated 

using normal annual precipitation, daily maximum air temperature, and daily precipitation. 

Some studies considered it as an indicator of surface moisture deficient in their analysis. It is 

based on water balance theory, ranging from 0 to 800 (0.01 inches, using English units) or 0 

to 203.2 (mm, using S.I. units), representing the spectrum from wet to dry conditions. The 

computation process to obtain KBDI (Q) is represented as: 

𝑑𝑄 =  
[203.2−𝑄][0.968 exp(0.0875𝑇+1.5552)−8.30]𝑑𝜏

1+10.88 exp (−0.001736𝑅)
, (2) 

𝑄 =  𝑄0 + 𝑑𝑄 − 𝑑𝑃, (3) 

where dQ represents drought incremental rate that is used for updating KBDI (Q0) of the 

previous day, T is daily maximum air temperature, R is mean annual precipitation, dP is daily 

precipitation, dτ denotes the time increment set to 1 day in this study. The daily KBDI is 

averaged to 8-day/monthly for sensitivity evaluation. Note that dQ = 0 when T < 10°C, and only 

the dP is considered when it exceeds the net accumulated precipitation of 5 mm. 

 

STR is calculated based on shortwave infrared reflectance (RSWIR) that is sensitive to surface 

water content: 

𝑆𝑇𝑅 =  
(1−𝑅𝑆𝑊𝐼𝑅)2

2𝑅𝑆𝑊𝐼𝑅
, (4) 

Subsequently, to obtain the scaled STR as a drought index, STR is detrended to remove 

seasonal cycles by the wettest (highest STR) and driest (lowest STR) values in the historical 

records at the same month/day of year.  
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By using the anomaly information of precipitation (P), LST, and NDVI, we will develop SDCI 

as follows: 

𝑆𝐷𝐶𝐼 =  0.5 𝑃𝐶𝐼 + 0.25 𝑉𝐶𝐼 + 0.25 𝑇𝐶𝐼, (5) 

𝑇𝐶𝐼 =  
𝐿𝑆𝑇𝑚𝑎𝑥−𝐿𝑆𝑇𝑖

𝐿𝑆𝑇𝑚𝑎𝑥−𝐿𝑆𝑇𝑚𝑖𝑛
, (6) 

𝑃𝐶𝐼 =  
𝑃𝑖−𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥−𝑃𝑚𝑖𝑛
, (7) 

𝑉𝐶𝐼 =  
𝑁𝐷𝑉𝐼𝑖−𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
, (8) 

where PCI (precipitation condition index), VCI (vegetation condition index), and TCI 

(temperature condition index) in Eqs. (2-5) represent detrended results from monthly or 8-days 

values of P, LST, and NDVI. The SDCI is the weighted average of the three indices and the 

weights are pre-determined based on previous studies. 

 

1.1.2.3 Algorithm Input and Output Variables 

The ECOSTRESS ESI output is operated by NASA Jet Propulsion Laboratory (JPL), and the 

ET product is estimated based on the 70-m resolution level-3 ECOSTRESS LST product, thus 

ESI is considered as the level-4 output in the product list. The ECOSTRESS ESI is generated 

globally and freely available online in near real time. Other released indices require input 

variables listed below. 

Table 1: Algorithm input and output variables 

Drought Index Input Variable Input Data 

KBDI Daily maximum air 

temperature 

ERA5-Land 

Daily precipitation ERA5-Land 

STR SWIR band (2105–2155 nm) MODIS 

SDCI Daily precipitation ERA5-Land 

Daily NDVI MODIS 

Daily LST MODIS 
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1 . 1 . 3  A l g o r i t h m  U s a g e  C o n s t r a i n t s  

The present ECOSTRESS ESI is computed based on clear-sky LST data. While it effectively 

reveals intricate spatial patterns for mapping drought at local scales, its utility is significantly 

compromised by cloud cover. Additionally, the lack of a fixed revisit time throughout the day 

results in temporally adjacent ESI images. This variability may render them not directly 

comparable, as the ESI exhibits a distinct diurnal cycle. Consequently, while the current clear-

sky ESI output serves as a valuable tool for mapping drought stress, its capability to capture 

temporal variability in drought conditions is limited. Therefore, there exists a potential gap in 

effectively monitoring drought temporal dynamics over time using the current ESI product. 

Additionally, all RS-based drought indices currently face challenges due to cloud cover. 

Therefore, to enhance the applicability of the algorithms, it is advisable to concentrate on an 

8-day or monthly scale.  

 

1 . 1 . 4  P e r f o r m a n c e  A s s e s s m e n t  

1.1.4.1 Validation Methods 

The ISMN functions as a centralized repository for globally accessible (Al-Yaari et al., 2019), 

in situ soil moisture measurements. It systematically aggregates, standardizes, and openly 

disseminates in-situ soil moisture data obtained at various depths across diverse networks. 

Soil moisture is considered as the indicator of agricultural drought as agricultural drought is 

generally defined as the soil water deficit that impacts the crop yield. In this project, we 

employed surface soil moisture measurements obtained from 36 ground sites in Africa, 

covering a spectrum of climate and land cover types. The correlation coefficient will be 

computed between in-situ soil moisture and various drought indices to assess their 

effectiveness in capturing ground surface wetness across diverse climate and biome 

conditions. Additionally, following seasonality detrending, comparisons will be made between 

soil moisture anomalies and detrended drought indices to determine the indices' ability to 

capture soil moisture deficits.  
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1.1.4.2 Uncertainties 

The statistics of correlation coefficient between soil moisture with drought indices at 8-day and 

monthly scales have been summarized in Table 2. 

Table 2: Median value at different sites and overall standard deviation (STD) statistics of Correlation coefficient (cc) 

between in-situ SM and different drought indices at 8-day and monthly scales. 

Index 8-day monthly 

cc STD cc STD 

KBDI -0.47 0.17 -0.55 0.24 

SDCI 0.40 0.15 0.44 0.24 

STR 0.60 0.21 0.61 0.25 

ESI 0.49 0.16 0.53 0.19 

 

More detailed validation and comparison are provided in the validation report. 

1 . 1 . 5  A l g o r i t h m  I m p l e m e n t a t i o n  

The ECOSTRESS ESI and MODIS products are free available at NASA Earthdata. The access 

is https://search.earthdata.nasa.gov/search?q=C1534730762-LPDAAC_ECS. In addition, 

NASA also provides an online sampling tool that allows end users to directly sample the 

products based on uploaded site geo-locations and shapefiles of the region of interest for their 

study. The online sampling tool is available at https://appeears.earthdatacloud.nasa.gov/.  

The ERA5-Land is available at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-

era5-land?tab=overview and Google Earth Engine (https://earthengine.google.com/). 

 

1 . 1 . 6  S i g n i f i c a n c e  D i s c u s s i o n  

The ECOSTRESS ESI is the first operational thermal drought index that is available at 70 m 

spatial resolution. It provides the promising ability to monitor evaporative stress across diverse 

regions and ecosystems in Africa. With the availability of near real-time or regularly updated 

data, the 70-m ESI can provide timely insights into changing drought conditions, allowing for 

prompt interventions and adaptive responses to mitigate the impacts of drought on agriculture, 

https://search.earthdata.nasa.gov/search?q=C1534730762-LPDAAC_ECS
https://appeears.earthdatacloud.nasa.gov/
https://earthengine.google.com/
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water supplies, and ecosystems. The availability of high-resolution global ESI data opens up 

new opportunities for research and innovation in drought monitoring, climate studies, 

agricultural modeling, and water resource management. Researchers can use this dataset to 

develop and validate new algorithms, improve drought forecasting models, and advance our 

understanding of the complex interactions between climate, land surface processes, and water 

availability. 

 

In addition, the inter-comparison among drought indices driven by various input variables 

facilitates the interpretation of drought signals for end users. Additionally, it enables the 

identification of the most suitable index for specific contexts or regions.  

1 . 1 . 7  O p e n  R e s e a r c h  

The algorithm and data processing codes will be freely available through VISTA processors. 

1 . 2  O t h e r  d r o u g h t  P r o d u c t  

1 . 2 . 1  D a t a  O v e r v i e w  

Two soil moisture RS products are included for comparison: National Aeronautics and Space 

Administration (NASA) Soil Moisture Active Passive (SMAP) soil moisture product (Entekhabi 

et al., 2010), and European Space Agency (ESA) Soil Water Index (SWI) from Copernicus 

Global Land Products.  

 

1 . 2 . 2  P r o d u c t  D e s c r i p t i o n  

1.2.2.1 Scientific Theory 

Two microwave (MW)-based RS soil moisture products were also included for 

comparison. The Soil Moisture Active Passive (SMAP) mission is a NASA satellite mission 

designed to measure and map global soil moisture and freeze/thaw state. The SMAP satellite 

carries both active and passive microwave instruments to provide high-resolution soil 

moisture data, enabling scientists to better understand Earth's water cycle and improve 

weather and climate forecasting models. The SMAP soil moisture product offers valuable 

insights into soil moisture dynamics at various spatial and temporal scales, aiding in 
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applications such as drought monitoring, flood prediction, agricultural planning, and 

ecosystem management.  

The ESI SWI assesses soil moisture conditions at various soil depths and standardizes 

the measurements using historical data (Albergel et al., 2008). The SWI is calculated from 

Surface Soil Moisture (SSM) from Metop ASCAT sensors on both Metop-A and Metop-B 

using a two-layer water balance model. We incorporate them in our assessment and leverage 

them as references for large-scale mapping purposes. 

 

1 . 2 . 3  A l g o r i t h m  U s a g e  C o n s t r a i n t s  

The constraints of using SMAP and ESA soil moisture data to monitor agricultural drought 

include: 

(1) Spatial and temporal resolution limitations: SMAP data may not provide sufficient spatial 

details to capture small-scale variations in soil moisture that are critical for agricultural drought 

monitoring at the field or farm level. 

(2) Sensitivity to vegetation cover: SMAP measurements may be influenced by vegetation 

cover, leading to inaccuracies in soil moisture estimates, especially in densely vegetated 

areas. 

(3) Limited integration with other drought indicators: SMAP soil moisture data may not be 

integrated effectively with other drought indicators (e.g., precipitation, temperature) to provide 

a comprehensive assessment of agricultural drought conditions. 

1 . 2 . 4  P e r f o r m a n c e  A s s e s s m e n t  

1.2.4.1 Validation Methods 

The SMAP and ESA soil moisture dataset are validated based in situ soil moisture 

measurements from ISMN, the same reference data that used for validating the drought indices 

involved in this project. 
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1.2.4.2 Uncertainties 

The statistics of correlation coefficient between soil moisture with soil moisture products at 8-

day and monthly scales have been summarized in Table 3. 

Table 3: Median value at different sites and overall standard deviation (STD) statistics of Correlation coefficient (cc) 

between in-situ SM and different soil moisture products at 8-day and monthly scales. 

Index 8-day monthly 

cc STD cc STD 

SMAP 0.85 0.07 0.88 0.11 

SWI 0.88 0.12 0.91 0.21 

 

1 . 2 . 5  A l g o r i t h m  I m p l e m e n t a t i o n  

The NASA SMAP soil moisture product is available at NASA earthdata 

(https://search.earthdata.nasa.gov/search?q=SPL4SMAU%20V007). The ESA SWI data is 

available at the ESA Copernicus Global Land Service platform 

(https://land.copernicus.eu/en/products/soil-moisture/daily-soil-water-index-global-v3-0-12-

5km). 

 

1 . 2 . 6  S i g n i f i c a n c e  D i s c u s s i o n  

RS soil moisture products provide direct measurements of soil moisture content, which is a 

key indicator of drought conditions. Unlike some drought indices that rely on indirect 

measurements or proxies, the soil moisture data offer a more accurate representation of soil 

moisture levels in near real-time. In addition, the soil moisture products offer a sub-daily near 

real time gap-free soil moisture monitoring, that is suitable for temporal variability analysis of 

drought conditions. Thus, they capture soil moisture dynamics over time, including fluctuations 

in moisture levels due to precipitation events or changes in land surface conditions. This 

dynamic monitoring capability enhances the understanding of drought evolution and intensity, 

helping to assess its impacts more effectively. They can be readily incorporated into 

operational drought monitoring systems, providing decision-makers with timely and actionable 

information for drought preparedness and response. The availability of reliable soil moisture 

https://search.earthdata.nasa.gov/search?q=SPL4SMAU%20V007
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data from SMAP enhances the effectiveness of early warning systems and drought mitigation 

efforts. 

 

1 . 2 . 7  O p e n  R e s e a r c h  

The data processing tool and code will be available through the VISTA processors. 

1 . 3  H i g h - r e s o l u t i o n  c r o p  w a t e r  s t r e s s  ( 2 0 m )  

1 . 3 . 1  A l g o r i t h m  O v e r v i e w  

The most straightforward way to derive crop water stress information from thermal Earth 

Observation measurements, is to compute the difference between ambient air temperature 

(𝑇𝑎𝑖𝑟) and the land surface temperature (LST), as indicated by e.g. Idso et al. (1977). The 

general concept here is that crops having insufficient access to water resources tend to close 

their stomata to limit excessive water loss through transpiration. As a result, the leaf surface 

of the crop heats up compared to the surrounding air. Hence, strongly positive values of LST 

– 𝑇𝑎𝑖𝑟 indicate water stress in crops. Currently, the main limitation to offer such a product in an 

operational setting is the lack of high spatial and temporal resolution thermal satellite data. 

While waiting for future thermal satellite missions to bridge this gap, several data sharpening 

techniques have been proposed to generate high-resolution LST data based on lower 

resolution alternative data sources. One such popular approach is the Sen-ET algorithm, which 

generates 20 m daily LST data based on a data fusion approach between 1 km thermal data 

from Sentinel-3 (S3) and 20 m optical data from Sentinel-2 (S2). 

Three main problems can be identified regarding this sharpened 20 m LST product from 

Sentinel-3: 

1. Generally, the operational Sentinel-3 SLSTR split-window (SW) algorithm 

systematically overestimates LST, due to wrongly assigned land covers and 

corresponding SW coefficients (Pérez-Planells et al., 2021; Sanchez et al., 2024).  

2. Although the thermal sharpening procedure ensures conservation of surface energy 

between the low- and high-resolution products, sharpened high-resolution LST 

products (especially when sharpening ratios are high as is the case for S3), are known 

to suffer from a loss of LST dynamic contrast compared to an LST product originally 
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captured at high resolution. Bellvert et al. (2020) for instance concluded that extremes 

in LST were not properly captured in S3 sharpened LST imagery, making it less suited 

for precision agriculture applications as compared to high-resolution LST imagery.  This 

is especially true for highly heterogeneous scenes such as orchards or complex 

agricultural landscapes in a smallholder farming context.  

3. Directional effects caused by sun-sensor geometry variations between subsequent 

LST observations typically can result in LST differences of more than 10 K (Lagouarde 

& Irvine, 2008), causing important inconsistencies in LST time series. 

Given these remaining issues, we suggest adding a two-stage LST correction procedure to 

produce higher quality high-resolution LST measurements. The first stage involves cross-

calibrating the thermally sharpened LST with ECOSTRESS LST to compensate for the known 

quality issues with S3 data itself and the sharpening procedure. The second stage entails the 

quantification of directional effects by comparing simultaneous acquired cross-calibrated 

thermally sharpened S3 images and ECOSTRESS with different viewing geometry. This allows 

to remove the directional effects in the high-resolution S3 LST.  

Figure 1 shows a complete overview of the process of deriving the high-resolution crop water 

stress product. The algorithm can be subdivided in three parts: 

1. Thermal sharpening based on Sen-ET methodology. 

The thermal sharpening method is a data mining sharpener that uses S2 bands and a 

digital elevation model (DEM) as predictors for S3 LST (Gao et al., 2012a; Guzinski et al., 

2020). The original S3 LST with a resolution of 1000 m is downscaled to S2’s 20 m 

resolution. The resulting LST is called S3 high-resolution (HR) LST.   

2. LST accuracy improvement by cross-calibration and directional corrections using 

ECOSTRESS data. 

During this step, the quality of the high-resolution LST product generated through S2 and 

S3 data fusion is improved through an additional cross-check with high-resolution (70m) 

LST data as obtained from ECOSTRESS. To enable a pixel-by-pixel comparison of both 

LST products, the S3 HR LST of 20 meter is resampled to the corresponding ECOSTRESS 

image. Thereafter, the process consists of two subsequent steps. 
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• Cross-calibration 

The direct comparison of S3 HR LST (70 m) with ECOSTRESS, excluding data with 

different directional effects, allows to define a gain and offset to cross-calibrate S3 HR 

LST to S3* HR LST.  

• Directional correction 

The direct comparison of S3* HR LST (70m) with ECOSTRESS allows to retrieve 

directional model parameters to correct for directional effects. The correction of S3* HR 

LST (20 m) results in nadir S3* HR LST (20 m). 

3. Crop water stress indicator retrieval. 

Based on the nadir S3* HR LST (20m) and air temperature, 𝑇𝑎𝑖𝑟, resampled to 20 meters 

from the hourly ERA5 dataset, the crop water stress indicator is determined. The resulting 

product is available twice per day (according to local Sentinel-3 overpass times). 
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Figure 1: Algorithm overview for deriving high-resolution crop water stress indicator. 

 

1 . 3 . 2  A l g o r i t h m  P r o c e s s i n g  S t e p s  

The following sections provide an elaborate description of the three major processing steps: 

thermal sharpening, cross-calibration and directional correction, and crop water stress 

indicator retrieval. 

Thermal Sharpening 

In this step, a high-resolution LST product is generated based on the fusion between high-

resolution Sentinel-2 optical data and low-resolution Sentinel-3 thermal data. Each S3 
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acquisition is paired with a S2 acquisition, with a maximum of ten days between the two 

acquisitions. Then, a specific regression model, separately fitted for each S2-S3 scene pair, is 

employed for sharpening. 

• Pre-processing steps 

Based on the definition of the geographical region of interest (ROI) as well as the period of 

interest (start and end date) the required Sentinel-2 and Sentinel-3 imagery is downloaded. 

For Sentinel-2, pre-processing includes cloud masking based on the corresponding scene 

classification layer, 10-daily median compositing, followed by linear interpolation of any 

remaining data gap and finally reprojection of all bands to 20 m resolution. Based on the extent 

of the resulting Sentinel-2 data, the workflow reprojects and resamples the Copernicus DEM 

to match the S2 images. Sentinel-3 imagery is also clipped and reprojected based on the S2 

tile extent. The original data is then split into an LST, a cloud mask and an observation 

geometry file, the latter containing information such as latitude, longitude, viewing and solar 

zenith and azimuth angles. These geometry variables are resampled (cubic spline 

interpolation) to 20 m resolution to fully match the Sentinel-2 data. As a final step, the S3 LST 

data is masked based on the associated cloud mask. Figure 2 shows the pre-processing flows.  

 

Figure 2: Pre-processing flow for Sentinel-3 data preparation. Retrieved from (USER MANUAL FOR SEN-ET SNAP 

PLUGIN (V1.1.0), 2020) 

 

• Data Mining Sharpener (DMS) 

Figure 3 shows the principles of the thermal data sharpening model, which is based on (Gao 

et al., 2012a). In essence, the method assumes a constant relation between thermal EO data 
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and optical EO data, irrespective of the resolution. This relation is initially established at low 

(S3) resolution and then applied to the high-resolution optical data to obtain sharpened thermal 

data. An additional bias correction between the low- and high-resolution thermal data finally 

ensures conservation of energy. 

 

Figure 3: Thermal sharpening model. Retrieved from (Gao et al., 2012b). 

The atmospherically corrected Sentinel-2 optical data, with 20 m resolution, is resampled to 

the corresponding SLSTR LST image, with 1 km resolution. Simultaneously, slope and aspect 

maps are generated from the DEM, which are resampled to SLSTR resolution, to estimate the 

solar irradiance incident angle for the S3 overpass time. A multivariate decision tree regression 

model is then trained based on the three resampled datasets and LST as the predictors and 

the dependent variable, respectively. The selection of training samples is automated and 

based on selecting 80% of non-cloudy low-resolution pixels for which the high-resolution pixels 

show the lowest coefficient of variation. The regression model rises as the result of a bagging 

ensemble of decision trees (Breiman, 1996). The decision trees are modified, such that for 

each leaf node the corresponding samples construct a multivariate linear model.  

Unlike the original Sen-ET implementation, the decision tree sharpener is only trained on the 

full Sentinel-2 scene instead of using a moving window approach, to limit the processing cost 

of the implementation. For each observation date, a separate sharpening model is trained. In 

the original Sen-ET workflow, an additional bias correction has been implemented to ensure 

energy conservation between the original low-resolution LST and the generated high-

resolution LST values. This step has been added as an optional post-processing step in our 
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implementation, but has been switched off by default as it generated clear artifacts in the 

sharpened LST products. This bias correction is achieved by comparing the emitted radiation 

from the predicted high-resolution LST with the original low-resolution observed LST to 

determine a bias. The biases serve as offsets for each low-resolution pixel. Subsequently, 

each offset is applied to all sharpened pixels inside the corresponding coarse pixel. The final 

product of the sharpening process is a 20-meter representation of the LST. 

For more details related to the Sen-ET algorithm, we refer to the online manual (USER 

MANUAL FOR SEN-ET SNAP PLUGIN -V1.1.0, 2020). 

Cross-Calibration and Directional Correction 

Within this step, high-resolution LST observations from ECOSTRESS are used to improve the 

quality of the high-resolution LST product as derived from the combination of Sentinel-2 and 

Sentinel-3. The detailed procedure is explained in the following sections.  

• Obtaining Quasi-Simultaneous ECOSTRESS Acquisitions 

A valid inter-comparison of satellite data requires similar conditions for both datasets. 

Therefore, simultaneous observations are vital to avoid the introduction of temporal 

discrepancies. However, perfect simultaneous observations are not achievable. Hence, an 

assumption arises: within a specific timeframe, temperature changes are negligible. Existing 

guidelines on LST validation/intercomparison suggest dology to select observations maximally 

10 minutes before or after the acquisition of S3 (Guillevic et al., 2018): 

For LST product intercomparisons, we recommend to select data with view 

angles lower than 45°, a satellite angular separation limit of ±10° and a satellite 

time separation limit of ±10 minutes. 

Although minor temporal effects may exist, merging extensive datasets with random minor 

heating and cooling effects diminishes the influence of these effects in the overall data 

analysis. Note that due to the presence of directionality effects only observation pairs with 

similar viewing geometry are selected from the quasi-simultaneous observations for this cross-

sensor-calibration phase. In the next step of the procedure (see further), we will include all 

observation pairs again to quantify directional effects. 

Here we have used ECOSTRESS LST as a cross-calibration source because of the high 

spatial resolution and acceptable, although irregular, temporal resolution. An alternative is 
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Landsat-8 LST at 100m resolution. However, the 70-meter resolution of ECOSTRESS is closer 

to the 20-meter resolution of the thermally sharpened LST. Furthermore, despite the irregular 

orbit, ECOSTRESS has a higher revisit time. NASA provides ECOSTRESS Land Surface 

Temperature and Emissivity (LSTE) data. Three file types for each observation combine the 

necessary information to extract meaningful LST data: an LSTE file, i.e., raw temperature and 

emissivity, a GEO file, i.e., geolocation data, and a CLOUD file, i.e., cloud cover information. 

The cloud file identifies cloud-covered pixels and the GEO file georeferences each pixel in the 

LSTE data. Note, some GEO files show in the metadata field 

"L1GEOMetadata/OrbitCorrectionPerformed" a False value. In that case, the georeferencing 

is unsuccessful for that observation, resulting in geolocation errors up to 7 km. These 

observations are not considered. The remaining cloud-free, i.e., cloud mask value equals zero, 

georeferenced LST pixels are exported as a GeoTIFF file (Figure 4).  

 

• Reproject High-Resolution Sentinel-3 LST to ECOSTRESS image 

Above, the procedure for selecting high-resolution S3 - ECOSTRESS image pairs is described. 

However, the downscaled S3 data has a spatial resolution of 20 meters, corresponding to the 

S2 data for thermal sharpening, as opposed to a spatial resolution of 70 meters for 

ECOSTRESS. A pixel-based comparison of two images requires pixel alignment between the 

two images. Therefore, in the next step, a reprojection of the S3 HR LST image to the 

Figure 4: ECOSTRESS image. 
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corresponding ECOSTRESS file, with cubic spline as the resampling method, delivers the 

required S3 HR LST for image comparison.  

• LST inter-comparison 

After high-resolution S3 resampling to ECOSTRESS, the image pair enables direct pixel-by-

pixel comparison. Figure 5 shows both images and their overlapping area. This area doesn’t 

show the absolute temperatures but the temperature difference between high-resolution S3 

and ECOSTRESS, by subtracting ECOSTRESS temperatures from S3 on a pixel-basis.  

The temperature difference image provides a qualitative and visual representation of how well 

the thermally sharpened S3 LST matches the quasi-simultaneous ECOSTRESS image. 

Additionally, Figure 6 provides a more quantitative representation of the image pair similarity 

by showing a histogram of the temperature difference of all pixels and a correlation plot of the 

absolute temperatures. 

 

Figure 5: Intercomparison of S3 HR LST (central small square) and ECOSTRESS observation (close-up of larger tile – 

upper-right), both at 70-meter resolution. Their overlap is shown in grey shades as the temperature difference 

between S3 HR LST and ECOSTRESS LST. The figure shows the geographic region South-East of Niamey-

Niger. 
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• Sampling from observation pairs 

Practically, observation pairs for a specific period and region are selected in the previous steps. 

Instead of using all pixel pairs from each observation, a sampling procedure selects only a 

limited number of pixel pairs per observation, depending on the number of valid pixel pairs for 

that observation. There are two reasons for sampling. First, by reducing the amount of data, 

the necessary computational costs for determining cross-calibration coefficients and retrieving 

the directional model decreases. Second, the method avoids that observations containing lots 

of pixel pairs have a too large contribution to the final correction. Each observation receives a 

weight 𝑤𝑖 based on the number of pixels 𝑛𝑖 for that observation: 

𝑤𝑖 =
𝑛𝑖

10000
   for 𝑛𝑖 ≤ 10000 

𝑤𝑖 = 1 + log (
𝑛𝑖

10000
)  for 𝑛𝑖 > 10000 

Based on the weight a sample size of 𝑠𝑖 pixels is determined: 

𝑠𝑖 = 𝑤𝑖 ⋅ 10000 

These pixels are randomly selected and used as input for the cross-calibration and directional 

model determination. 

• Cross-calibration 

The cross-calibration of the S3-HR LST and ECOSTRESS LST aims to remove inherent 

differences between the two datasets. A perfect cross-calibration is based on image pairs 

Figure 6: Histogram of temperature differences between an S3 HR LST and ECOSTRESS LST image on 
the left. Correlation plot of the same images on the right.  
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acquired under the same circumstances, including identical target, identical acquisition time, 

identical acquisition angle, etc.  This means we must select quasi-simultaneous image pairs 

with similar acquisition angles and thus similar directional effects. We apply two rules to select 

pixel pairs with similar directional effects: 

1. |𝑣𝑧𝑎𝑆3 − 𝑣𝑧𝑎𝐸𝐶𝑂𝑆𝑇𝑅𝐸𝑆𝑆| < 10° 

2. |𝑠𝑜𝑙𝑎𝑟 𝑎𝑛𝑔𝑙𝑒 − 𝑠𝑒𝑛𝑠𝑜𝑟 𝑎𝑛𝑔𝑙𝑒| > 10° for both satellites 

The first rule assumes that directional effects are negligible for view zenith angles (vza) that 

differ less than 10°. The second rule ensures that even if the first rule applies, pixel pairs 

observed within the proximity of the Sun’s direction are removed to avoid sharp hotspot effects, 

which influences an observation significantly for minor changes in acquisition angle. Based on 

all the pixel pairs that satisfy the requirements, a general offset and gain are determined:   

 

𝐿𝑆𝑇𝑆3,𝐻𝑅 = 𝑜𝑓𝑓𝑠𝑒𝑡 + 𝑔𝑎𝑖𝑛 ⋅ 𝐿𝑆𝑇𝐸𝐶𝑂𝑆𝑇𝑅𝐸𝑆𝑆  

 

The resulting cross-calibrated S3 HR LST then becomes: 

 

𝐿𝑆𝑇𝑆3,𝐻𝑅
∗ =

(𝐿𝑆𝑇𝑆3,𝐻𝑅 − 𝑜𝑓𝑓𝑠𝑒𝑡)

𝑔𝑎𝑖𝑛
 

The cross-calibration is executed on all pixels, both for the 20 m and 70 m resolution S3* HR 

LST. Now, we assume that the cross-calibrated datasets only differ due to directional effects.  

• Directional Corrections 

We assume that directional effects are invariant in time and space for a specific geographic 

region of interest. This assumption thus neglects the difference in directional effect for morning 

and evening observation or for different land covers. This approach returns a generic model, 

which reduces complexity and assures robustness, even for a small number of observations. 

The proposed approach allows for determining a single directional model for a defined area, 

which facilitates the implementation. However, in case of sufficient observations, a case 

specific directional correction is highly probable to return more accurate results.  

𝐿𝑆𝑇(𝑣𝑧𝑎) = 𝐿𝑆𝑇𝑛𝑎𝑑𝑖𝑟 + 𝐴 ∗ 𝑓(𝑣𝑧𝑎) 

Where LSTnadir is the nadir LST, A [K] represents the magnitude of directional effects and f [-] 

is the directional shape function, which is a function of the view zenith angle. Note that A can 
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be a negative value, which is often the case. In that case observed LST decreases for 

increasing vza. This effect is often caused by the cooler canopy covering a larger portion of 

the hotter soil. We choose the Vinnikov function to describe the shape of the directional effects: 

𝑓(𝑣𝑧𝑎) = 1 − cos(𝑣𝑧𝑎) 

For each pixel pair we can derive the value for A since the nadir LST is the same for both 

observations. 

𝐿𝑆𝑇𝑆3∗𝐻𝑅,𝑖(𝑣𝑧𝑎𝑆3∗𝐻𝑅,𝑖) = 𝐿𝑆𝑇𝑛𝑎𝑑𝑖𝑟 + 𝐴 ∗ 𝑓(𝑣𝑧𝑎𝑆3∗𝐻𝑅,𝑖) 

𝐿𝑆𝑇𝐸𝐶𝑂𝑆𝑇𝑅𝐸𝑆𝑆,𝑖(𝑣𝑧𝑎𝐸𝐶𝑂𝑆𝑇𝑅𝐸𝑆𝑆,𝑖) = 𝐿𝑆𝑇𝑛𝑎𝑑𝑖𝑟 + 𝐴 ∗ 𝑓(𝑣𝑧𝑎𝐸𝐶𝑂𝑆𝑇𝑅𝐸𝑆𝑆,𝑖) 

𝐿𝑆𝑇𝑆3∗𝐻𝑅,𝑖(𝑣𝑧𝑎𝑆3∗𝐻𝑅,𝑖) − 𝐿𝑆𝑇𝐸𝐶𝑂𝑆𝑇𝑅𝐸𝑆𝑆,𝑖(𝑣𝑧𝑎𝐸𝐶𝑂𝑆𝑇𝑅𝐸𝑆𝑆,𝑖)

= 𝐴𝑖 ∗ (𝑓(𝑣𝑧𝑎𝑆3∗𝐻𝑅,𝑖) − 𝑓(𝑣𝑧𝑎𝐸𝐶𝑂𝑆𝑇𝑅𝐸𝑆𝑆,𝑖)) 

However, single pixel pairs suffer from noise. To get a robust A value we use all pixel pairs 

from which only one A value is determined based on a least-squares minimization. 

𝐴: min (∑ [
𝐿𝑆𝑇𝑆3∗𝐻𝑅,𝑖(𝑣𝑧𝑎𝑆3∗𝐻𝑅,𝑖) − 𝐿𝑆𝑇𝐸𝐶𝑂𝑆𝑇𝑅𝐸𝑆𝑆,𝑖(𝑣𝑧𝑎𝐸𝐶𝑂𝑆𝑇𝑅𝐸𝑆𝑆,𝑖)

      −𝐴 ∗ (𝑓(𝑣𝑧𝑎𝑆3∗𝐻𝑅,𝑖) − 𝑓(𝑣𝑧𝑎𝐸𝐶𝑂𝑆𝑇𝑅𝐸𝑆𝑆,𝑖))
]

2

𝑖

) 

Based on the retrieved A parameter, each pixel can be corrected: 

𝐿𝑆𝑇𝑛𝑎𝑑𝑖𝑟,𝑖 = 𝐿𝑆𝑇(𝑣𝑧𝑎𝑖) − 𝐴 ∗ 𝑓(𝑣𝑧𝑎𝑖) 

 

Crop Water Stress Indicator Retrieval 

Once the fully corrected LST has been generated, it is combined with air temperature data, the 

latter being collected from the ERA-5 hourly collection available through the Copernicus 

Climate Data Store. Based on the area and time period of interest, the workflow downloads 

the required data from the Climate Data Store (CDS). Finally, the resulting air temperature 

data is resampled to 20 m resolution and the correct timing is selected to match the Sentinel-

3 overpass time for each individual observation. 

1 . 3 . 3  A l g o r i t h m  I n p u t  V a r i a b l e s  

The algorithm requires the user to define the region of interest, specified by the S2 tile name, 

e.g., 31PDR, and the period of time for which the crop water stress indicator needs to be 
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generated. For this period and area of interest, all necessary input data for the algorithm is 

downloaded. 

The algorithm relies mainly on data sources from Copernicus: Sentinel-2 MSI optical data, 

Sentinel-3 SLSTR thermal data, hourly ERA-5 reanalysis meteorological data and the 30 m 

Copernicus digital elevation model (DEM). Additionally, ECOSTRESS data are acquired from 

the WASDI platform.  

1 . 3 . 4  A l g o r i t h m  O u t p u t  V a r i a b l e s  

The algorithm’s main output is the derived crop water stress index, expressed as a temperature 

difference between the land surface and the surrounding air. Additional intermediate variables, 

that can be considered as outputs as well, are the nadir high-resolution LST, the cross-

calibration and directionality parameters. These parameters are a single gain, a single offset 

and a single Vinnikov parameter for the defined ROI and date range.  

1 . 3 . 5  A l g o r i t h m  U s a g e  C o n s t r a i n t s  

• General constraints 

The proposed algorithm makes use of optical and thermal satellite data as primary data 

sources. Both of these data sources are negatively affected by cloud cover. This means that 

in areas and periods of time characterized by heavy cloud cover, the available input data for 

the algorithm will be limited and drops in product quality can likely occur. 

• Cross-calibration and directional corrections 

The feasibility of the process of correcting the sharpened LST data depends on the availability 

of S3 HR LST and ECOSTRESS LST observation pairs. The more valid data pairs are found, 

the more accurate the correction results. The data pairs depend on the number of cloud-free 

ECOSTRESS observations at the time of S3 observations. The user should be aware of two 

limitations related to ECOSTRESS data availability: 

- ECOSTRESS data is not available at latitudes higher than 52° or lower than -52° 

(corresponding to the maximum inclination angle of the International Space Station). 

- The closer to the equator the lower the revisit frequency and thus less chance of finding 

a sufficient amount of observation pairs.  
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In general, it is recommended to check the frequency of available cloud-free observations for 

both Sentinel-2, Sentinel-3 and ECOSTRESS in the region and period of interest. In case data 

availability is a problem, the user should consider expanding either the area or period of 

interest to ensure sufficient data is available to produce reliable LST estimates. 

1 . 3 . 6  P e r f o r m a n c e  A s s e s s m e n t  

Both the high-resolution LST product derived from Sentinel-3, Sentinel-2 and ECOSTRESS 

data, as well as the final crop water stress indicator have been subjected to product validation. 

We refer to Deliverable 6 – Validation methodology and results (D06_VM_FR_I) of the 

EOAfrica ARIES project for more details on the procedure and results. 

1 . 3 . 7  A l g o r i t h m  I m p l e m e n t a t i o n  

1.3.7.1 Algorithm Availability 

The algorithm is available as a series of Python source code files, accompanied by a Jupyter 

Notebook showing how to operate the workflow. 

More information related to algorithm availability can be found in Deliverable 8 – 

Documentation of processor/toolbox/software (D08_PD_I) of the EOAfrica ARIES project. 

1.3.7.2 Input Data Access 

All required input data for the workflow are retrieved from the Copernicus Data Space 

Ecosystem (Sentinel-2, Sentinel-3, Copernicus DEM), the Copernicus Climate Data Store 

(ERA5) and WASDI platform (ECOSTRESS data). 

1.3.7.3 Output Data Access 

Final output products will be generated locally on the machine used to execute the workflow. 

From there, the user can upload those products to the Food Security TEP platform for proper 

visualization. Final outputs include a timeseries of the crop water stress indicator (LST-Ta) and 

the NDVI for the region and time period of interest. 

1 . 3 . 8  S i g n i f i c a n c e  D i s c u s s i o n  

It is important to note that the high-resolution crop water stress indicator generated here should 

never be interpreted on its own, but always in combination with other, more generic EO-based 

indicators on land cover/crop health. The crop water stress indicator purely looks at observed 



 

 

D07_ATBD_PS_I 
– ATBD/s and Product Specification 

 
 

 

 

EO Africa // ARIES 

 

 

 

Page 33  

 

land surface temperatures compared to air temperature, without considering for instance land 

cover or crop type information. The relation between these two temperatures is different for 

different land cover types (e.g. dry soil will have much higher LST compared to healthy 

vegetation at similar air temperatures). Abrupt changes in the indicator can be attributed to 

both occurrence of water stress, but also to land cover changes and/or agricultural 

management practices. We would hence recommend to always visualize this indicator 

alongside the Normalized Difference Vegetation Index (NDVI) and preferably also rainfall data 

to ease interpretation of the observed trends. Other data layers which could be added include 

a land cover and/or crop type map. Only in case of a considerable rise in the crop water stress 

indicator accompanied by a steady state in the NDVI, one could conclude water stress is 

occurring in a certain field. For convenience, the workflow also generates a 10-daily composite 

NDVI timeseries for the area and time period of interest. 

1 . 3 . 9  O p e n  R e s e a r c h  

In absence of operational, high-resolution thermal missions, this algorithm makes use of 1 km 

Sentinel-3 LST measurements as the basis for developing a high-resolution crop water stress 

indicator. Converting 1 km data to 20 m data (sharpening ratio = 50) remains a challenging 

task, introducing a lot of uncertainty into the final product. While previous validation efforts 

indicate that spatial patterns are maintained in the sharpened product, the thermal contrast of 

thermally sharpened images remains compared to native high-resolution data. This leads to 

colder hot surfaces, such as a dry bare field, and hotter cold surfaces, like a wet full-grown 

crop field. This can significantly impact the accuracy of crop water stress indicators. Addressing 

this issue would enhance the overall quality of the indicator. One potential solution involves 

using histogram matching between quasi-simultaneous thermally sharpened Sentinel-3 (S3) 

and ECOSTRESS images under similar viewing conditions. This approach can help determine 

a transformation function that stretches thermal contrast, potentially improving the accuracy of 

LST estimations. This solution would replace the proposed cross-calibration procedure 

between both sensors, eliminating the need for gain and offset retrieval. 

The approach proposed here is limited to ECOSTRESS data for correcting the sharpened S3 

LST data. In the future, additional high-resolution thermal data sources could be added as well 

to increase the data availability for this cross-calibration procedure. This includes Landsat 8/9 

data, but also future upcoming missions such as LSTM. 
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While general directionality corrections are effective in removing broad trends, they may prove 

insufficient for specific land cover or field types. Directional effects also vary depending on the 

time of day, since they are influenced by the temperature distribution of different scene 

components. Enhancing directional corrections by making them pixel and time-dependent 

could yield significant improvements. Separating morning and evening observations can 

capture more directionality, especially when the sun is present. Moreover, corelating 

directionality to biophysical parameters such as Normalized Difference Vegetation Index 

(NDVI), Leaf Area Index (LAI), and Fraction of Vegetation Cover (FCOVER) could further 

enhance accuracy. This requires additional research. 

A final potential improvement of the algorithm lies in the directional model itself. Integrating a 

hotspot kernel alongside the base shape kernel can refine the model's accuracy. Currently, 

only the viewing angle is considered, but the Sun's position also influences observed LST. For 

countries at lower latitudes where the Sun reaches lower zenith angles, a hotspot correction 

could significantly enhance LST estimation, when the sensor's angle is close to the Sun's angle 

(i.e., less than 10°). For higher latitude countries, there is less need to include such an 

additional correction.  

 

 

2  H yp er sp e c t r a l  D a t a  Pr o d u cts  

2 . 1  L e a f  A r e a  I n d e x  &  L e a f  W a t e r  C o n t e n t  

Leaf Area Index (LAI) is defined as the amount of leaf area (m²) in a canopy per unit ground 

area (m²) (Watson 1947). It is a critical variable for applications ranging from climate science 

to food security and agriculture as it is one of the main driving forces of net primary production, 

water and nutrient use, and carbon balance. As such, it is an essential variable in describing 

and quantifying processes such as photosynthesis, respiration, precipitation interception and 

carbon build-up as well as an indicator for plant health and development (Bréda 2008, GCOS 

2011, Asner et al. 1998, Ballaré et al. 2012) 

The Leaf Water Content (LWC) is defined as the content of water per leaf area (g/cm²). 

Multiplied by the leaf area, the water content of the plant can be calculated. The plant water is 
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an important indicator of the current status of the plant concerning its water demand and the 

possible need for irrigation (Quemada et al. 2021). 

2 . 1 . 1  A l g o r i t h m  O v e r v i e w  

LAI can be determined in the field through a variety of direct and indirect methods (Fang et al. 

2019). Moreover, retrieving LAI from remote sensing data has been extensively studied over 

the last few decades (Goel 1989, Baret 2015, J. M. Chen 2018, Houborg et al. 2007, 

Verrelst et al. 2015, Zheng & Moskal 2009). Retrieval methods have been developed for 

a wide range of data captured mainly by passive multispectral, microwave and LiDAR 

sensors (Fang et al. 2019). More recently the developed methods, which can be 

categorized into empirical transfer functions and model inversion methods, are being 

expanded to upcoming hyperspectral sensors (Berger et al. 2018). The latter make use of 

a radiative transfer model, with the aim of establishing a relationship between fundamental 

canopy, soil and leaf properties, such as LAI, and the scene reflectance, given a specific 

sun-surface-sensor geometry (Goel & Thompson, 2000; S. Liang, 2004). 

 

2 . 1 . 2  A l g o r i t h m  D e s c r i p t i o n  

PROSAIL (Berger et al., 2018, Jacquemoud et al. 2009), which combines the PROSPECT 

leaf optical properties model (Jacquemoud & Baret, 1990) and the SAIL canopy 

bidirectional reflectance model (Verhoef, 1984) has become one of the most popular 

radiative transfer tools. It is generally user friendly, robust and has been consistently 

validated in laboratory, field and space experiments over an extended period, during which 

it has also been under continual development (Jacquemoud et al. 2009, Verhoef & Bach 

2003, Weiss et al. 2001, Kuusk 1991, Verhoef et al. 2007, Verhoef & Bach 2007, 

Jacquemoud et al. 1996. Fourty et al. 1996, Le Maire et al. 2004, Feret et al. 2008, Feret 

et al. 2017, Feret et al. 2021). One way to apply the model is to generate a set of modelled 

reflectance spectra based on a set of properly configured input variables and stored in a 

look-up table (LUT). The subsequent inversion process determines the set of canopy 

biophysical variables, aiming for the best match between the calculated and the remotely 

sensed reflectance (D. Huang et al. 2008, Verrelst et al. 2014). 
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2.1.2.1 Scientific Theory 

With the aim of creating an accurate LAI product based on hyperspectral data using a method 

that can also be used by inexperienced users, we decided to use a combination of Prospect-

D and 4SAIL as integrated in the EnMAP-Box, a free an open-source plugin for QGIS (Jakimow 

et al. 2023). Prospect-D was chosen for its ability to simulate leaf optical properties with high 

accuracy through a complete plant lifecycle: from emergence, to possible stress responses, 

through to senescence (Feret et al. 2017). 4SAIL applies the four-stream radiative transfer 

modelling concept (Figure 7: Four-stream RT modelling concept as applied in Suits and SAIL 

models (Verhoef et al. 2007)) and is able to simulate the bi-directional reflectance of 

homogeneous canopies as a function of soil reflectance, illumination and viewing geometries, 

several structural and biophysical variables, such as LAI, average leaf angle (ALIA), and a hot 

spot parameter. Comprehensive descriptions of both these models have already been 

published in literature (Feret et al. 2017, Verhoef et al. 2007). 

 

 

Figure 7: Four-stream RT modelling concept as applied in Suits and SAIL models (Verhoef et al. 2007) 

2.1.2.2 Mathematical Theory 

The mathematical theory behind radiative transfer modelling and its model inversion to derive 

plant parameters from reflectance spectra has been well described in the literature (Feret et 

al. 2017, Verhoef et al. 2007).  
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2.1.2.3 Algorithm Input Variables 

The coupled model requires information on a relatively large number of different input 

variables, which are listed in Table 4. 

Table 4 PROSAIL Input Variables and their Inversion status within ARIES 

Parameter Description Unit Model Inversion 

status 

ARIES 

N Leaf structure parameter - PROSPECT fixed 

Cab Leaf Chlorophyll a+b 

content 

µg cm-2 PROSPECT Inversion 

(distributed) 

Cw Leaf Equivalent Water 

content 

cm PROSPECT Inversion 

(distributed) 

Cm Leaf Mass per Area g cm-2 PROSPECT Fixed 

Ccar Leaf Carotenoids content µg cm-2 PROSPECT Fixed 

Cbr Fraction of brown leaves - PROSPECT Inversion 

(distributed) 

Canth Leaf Anthocyanins 

content 

µg cm-2 PROSPECT Fixed 

LAI Leaf Area Index m2 m-2 4SAIL Inversion 

(logical) 

ALIA Average Leaf Inclination 

Angle 

deg 4SAIL Inversion 

(distributed) 

Hspot  Hot Spot size parameter - 4SAIL Fixed 

soil Soil Reflectance 

(optional) 

- 4SAIL Fixed 

Psoil  Soil Brightness Parameter - 4SAIL Fixed 

SZA Sun Zenith Angle deg 4SAIL Fixed 
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OZA Observer Zenith Angle deg 4SAIL Fixed 

RZA Relative Azimuth Angle deg 4SAIL Fixed 

 

However, neither of these do necessarily have to be available as fixed values – either spatially 

distributed or discreet – for the intended Area of Interest (AOI). While information on some 

variables is usually available (e.g. illumination and viewing geometries depend on the 

acquisition), other variables might be highly diverse throughout the AOI or simply unknown. 

The decision for fixed values versus distributed values and the way in which these values are 

distributed – the EnMAP toolbox application offers statistical and logical options - does 

however have huge consequences for the design of the LUT, which has been shown to have 

substantial influence on the accuracy of the inversion results (He et al. 2012). Careful LUT 

parametrisation paired with a sufficient size of the LUT (He et al. 2012) is thus of utmost 

importance.  

The last column in the table shows which model parameters were fixed and which were left 

variable for inversion in ARIES. The size of the LUT was determined by the maximum number 

of possible drawings for the statistically distributed parameters available within the EnMap 

Toolbox, in combination with the number of steps chosen for the logically distributed parameter 

(LAI), resulting in a final LUT size of 710000 simulated reflectance spectra. The final parameter 

set used for derivation of the results can be found in the processor and toolbox description 

D08.  

 

2.1.2.4 Algorithm Output Variables 

The outputs of the algorithm are the variables that have been inverted in the model. In the 

ARIES use case, these are the leaf area index, the leaf chlorophyll a+b content, the average 

leaf inclination angle, the plant water content and the fraction of brown leaves. Different 

phenological phases can make it necessary to invert different parameters, leading to different 

output variables.   

2 . 1 . 3  A l g o r i t h m  U s a g e  C o n s t r a i n t s  

There are mathematical constraints to the amount of variables that can be inverted, but as they 

are dependent on the amount of bands and hyperspectral data as 100+ bands, they are not 
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relevant for the ARIES case. Instead, there are computational constraints due to the large data 

volumes of hyperspectral data, so that the look up table size has to be carefully chosen to 

provide both the needed variance in the variables and computational times that can be 

handled. Expert knowledge of the possible ranges of the input variables is extremely helpful 

for this.  

2 . 1 . 4  P e r f o r m a n c e  A s s e s s m e n t  

2.1.4.1 Validation Methods 

The validation methods are described in detail in the Validation Document D06.  

2.1.4.2 Uncertainties 

Plant variables are not independent of each other, as different plant characteristics have an 

effect on the same parts of the spectrum. Radiative transfer modelling uses the full spectrum 

and physical principles to find the best approximation between the measured spectrum and a 

simulated spectrum to decide which plant parameters fit best. This is done using the RMS error 

as a criterium. Nevertheless, a perfect fit between measured and modelled spectrum is never 

achieved, as there are always radiometric uncertainties in the data, both from the sensor itself 

and from the following processing steps (e.g. geometric resampling, atmospheric correction, 

cirrus and haze correction), in some cases it might even be possible that a “wrong” set of 

parameters is chosen due to spectral similarities that are based on very different plant and 

canopy characteristics. Additionally, the look up table approach allows only specific steps for 

the inverted variables and has all other parameters fixed, leading to additional sources of error 

and uncertainty. The RMS error result of the model inversion is hence an important factor to 

assess the quality of the results. Basing the final results on multiple best solutions and adding 

artificial noise to account for uncertainties are established strategies to circumvent some of the 

mentioned sources of error (Rivera et al. 2013). These are also available in the EnMap Toolbox 

application.  

2 . 1 . 5  A l g o r i t h m  I m p l e m e n t a t i o n  

2.1.5.1 Algorithm Availability 

The algorithm is available within the EnMAP-Box, as a free and open-source plugin to QGIS, 

which is an open-source Geographical Information System (GIS). The two tools can be found 

at the following websites:  



 

 

D07_ATBD_PS_I 
– ATBD/s and Product Specification 

 
 

 

 

EO Africa // ARIES 

 

 

 

Page 40  

 

QGIS: https://qgis.org/de/site/forusers/download.html 

EnMAP-Box: https://www.enmap.org/data_tools/enmapbox/ 

2.1.5.2 Input Data Access 

The EnMAP-Box can process both PRISMA and EnMAP data. To access this data, it is 

necessary to write a short tender to ASI and DLR respectively, as the data is only available for 

research purposes and cannot be shared. More details on data access can be found here:  

PRISMA: https://www.asi.it/en/earth-science/prisma/ 

EnMAP: https://www.enmap.org/data_access/ 

The other input data to the model comprise of leaf, canopy, soil and geometric parameters. 

The geometric parameters are the viewing angles defined by the scene acquisition time and 

pointing. As of now the soil background cannot be taken directly from the scene. It is possible 

to use an in-situ measured soil spectrum. Leaf and canopy parameters vary with different 

vegetation types, default parameters are available in the toolbox.  

As radiative transfer modelling is a physically based modelling approach, no training data is 

necessary. However, it is recommended to validate new parametrizations of vegetation in the 

model with in-situ data.  

2.1.5.3 Output Data Access 

Result data can be stored and accessed locally when using QGIS locally or it can be stored 

and accessed through the user account on the Food Security Explorer (https://foodsecurity-

explorer.net) when using the QGIS application on the platform.   

2 . 1 . 6  S i g n i f i c a n c e  D i s c u s s i o n  

The significance lies first and foremost in the significance of LAI and LWC information for 

agricultural monitoring and decision making, the ease of application (free and open source) 

and the information that can be derived in combination with other variables derived from 

hyperspectral analysis using radiative transfer model inversion. Additionally, physically-based 

modelling allows to transfer the method more easily than AI models, which usually need to be 

trained for every new location or new time-frame. 
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2 . 1 . 7  O p e n  R e s e a r c h  

The science of radiative transfer modelling is well understood, but the parametrization for 

different crop types and use cases is not an easy challenge. Validation for the application of 

the algorithm for the African test-sites in ARIES is limited to the test-sites that have provided 

direct validation data. Hence, more validation of the parametrization would be beneficial. 

Additionally, the large number of bands in the hyperspectral data, while advantageous in terms 

of information content, poses a challenge in terms of computational time and memory needed 

for the look-up-table approach. Here, further research and development to establish new, 

stable methods of model inversion that allow to fully utilize the information content of the data 

while also being computationally efficient would be beneficial.  

2 . 2  C a n o p y  W a t e r  C o n t e n t  

Canopy water content (CWC) is a vital parameter to monitor the plant status and support a 

balanced water supply and irrigation. Water stored in agricultural plants is linked to biochemical 

factors such as vegetation transpiration (Running et al., 1991) and net primary production. 

Especially for agricultural management in arid regions, accurate retrieval of the water content 

and vegetation traits might be crucial for mitigating water stress due to climate-related droughts 

and heat-waves (Tagliabue et al., 2022). 

2 . 2 . 1  A l g o r i t h m  O v e r v i e w  

For canopy water retrieval from hyperspectral, it is possible to use the specific H2O water 

absorption features contained in the detailed reflectance spectra. This is a difference to multi-

spectral data, which significantly broader and significantly less bands and thus can only 

estimated the water content via broad changes in the spectrum (e.g. lower value in the short-

wave infrared). Hence, where multi-spectral indices only allow for a qualitative derivation of the 

canopy water content, the hyperspectral absorption features allow for a quantitative derivation 

of the canopy water content.  

2 . 2 . 2  A l g o r i t h m  D e s c r i p t i o n  

The Plant Water Retrieval (PWR) extracts quantitative water content information in [g cm-2] or 

[cm] from hyperspectral images. It is implemented in the EnMAP-Box (Wocher et al. 2018). It 

applies the Beer-Lambert law (Equation 1) to inversely determine the optical thickness d of the 
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water layer responsible for the water absorption feature at 970 nm using water absorption 

coefficients for pure liquid water.  

2.2.2.1 Scientific Theory 

Plant water causes specific absorption features, which can be analyzed with hyperspectral 

data. After calibration (see Wocher et al. 2018) the optically active water thickness d of a 

measured vegetation spectrum can be determined through minimization of residuals to 

assumed dry reflectance line. 

 

Figure 8: Determination of optically active water thickness d from a measured spectrum through minimization of 

residuals to assumed dry reflectance line (dotted line) (Wocher et al. 2018) 

 

2.2.2.2 Mathematical Theory 

The mathematical formulas are as follows (Wocher et al. 2018):  
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with R 0 being the measured reflectance. The algorithm stops when the sum of the residuals 

to the assumed dry reflectance is reached. 

2.2.2.3 Algorithm Input Variables 

Since the algorithm has already been calibrated and validated against in-situ data (Wocher et 

al. 2018), the only input it needs is the measured spectral reflectance of the vegetation in 

question. 

2.2.2.4 Algorithm Output Variables 

The output of the algorithm is the plant water content in [g cm-2] or [cm] 

2 . 2 . 3  A l g o r i t h m  U s a g e  C o n s t r a i n t s  

Some vegetation biophysical variables may disturb the signal of water: for instance, 

Jacquemoud, et al. (2009) noted that the leaf area index (LAI) masks the water signal between 

1000 nm and 1400 nm and advised caution when using such indices for water retrieval. The 

comparatively low 970 nm water absorption depth is embedded in an area of generally high 

vegetation reflectance in the NIR. Due to the low absorption, radiation at 970 nm is expected 

to penetrate deeper into the canopy, reflecting a greater proportion of its total water content 

without a tendency to saturate. (Lillesaeter 1982, Newton & Blackman 1970, Bull 1991, Sims 

& Gamon 2003, Ghulam et al. 2008). Therefore, Peñuelas, et al. (1993, 1997) developed the 

970 nm water index (WI) to retrieve relative plant water concentration (PWC). Other studies 

have also focused on 970 nm absorption for the estimation of canopy water content (Vohland 

2008, Clevers et al. 2008, Clevers et al 2010, Cernicharo et al. 2013).  

2 . 2 . 4  P e r f o r m a n c e  A s s e s s m e n t  

2.2.4.1 Validation Methods 

The validation methods are described in detail in the Validation Document D06.  

2.2.4.2 Uncertainties 

As mentioned above, there are certain other plant characteristics that can interfere with the 

water signal at 970nm. This, and the radiometric uncertainties inherent in all satellite data (e.g. 

sensor noise, uncertainties through atmospheric and geometric correction) lead to 

uncertainties in the results of the algorithm. The algorithm itself does not calculate any 

uncertainty layer, meaning that results should be validated against in-situ data if possible.  
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2 . 2 . 5  A l g o r i t h m  I m p l e m e n t a t i o n  

2.2.5.1 Algorithm Availability 

The algorithm is available within the EnMAP-Box, as a free and open-source plugin to QGIS, 

which is an open-source Geographical Information System (GIS). The two tools can be found 

at the following websites:  

QGIS: https://qgis.org/de/site/forusers/download.html 

EnMAP-Box: https://www.enmap.org/data_tools/enmapbox/ 

2.2.5.2 Input Data Access 

The EnMAP-Box can process both PRISMA and EnMAP data. To access this data, it is 

necessary to write a short tender to ASI and DLR respectively, as the data is only available for 

research purposes and cannot be shared. More details on data access can be found here:  

PRISMA: https://www.asi.it/en/earth-science/prisma/ 

EnMAP: https://www.enmap.org/data_access/ 

2.2.5.3 Output Data Access 

Result data can be stored and accessed locally when using QGIS locally or it can be stored 

and accessed through the user account on the Food Security Explorer (https://foodsecurity-

explorer.net) when using the QGIS application on the platform.   

2 . 2 . 6  S i g n i f i c a n c e  D i s c u s s i o n  

Plant water retrieval is an important tool, where remotely sensed data can support farm 

management decisions, as irrigation area is ever extending while freshwater resources are 

often becoming scarcer. This hyperspectral method of using the specific plant water absorption 

at 970nm allows to make use of a characteristic water feature that differentiates the water 

content from other plant characteristics, but also from soil water content or atmospheric water 

content, which has an absorption at 940nm.  
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3  C o n c l u s i o n  

3 . 1  T h e r m a l  A l g o r i t h m s  

For thermal drought indicators, we performed a sensitivity analysis of agricultural drought 

indices at 8-day and monthly scales, encompassing remote sensing indices such as 

ECOSTRESS ESI, SMAP SM, ESA SWI, STR, SDCI, and meteorological KBDI. In-situ 

measurements from the International Soil Moisture Network (ISMN) were employed as a 

reference to understand the sensitivity of these indices to soil moisture variability. Results 

reveal SMAP's greater performance, followed by SWI. STR correlates with SM but includes 

scattered values. ECOSTRESS ESI effectively captures the spatial nuances of local drought 

stress; however, it is limited by temporal sampling frequency, impeding the variability analysis 

at intra-monthly scales. No single index universally excels, underscoring the need for further 

refinement and combination of different indicators/approaches. Using a cross-sensor 

calibration strategy, we have demonstrated the complementarity of current thermal satellite 

missions for generating a high-resolution RS data-driven crop water stress index. These efforts 

have clearly indicated the potential benefits of future thermal missions (e.g., TRISHNA, SBG, 

LSTM) for enhanced drought monitoring in Africa. 

3 . 2  H y p e r s p e c t r a l  A l g o r i t h m s  

The hyperspectral algorithms utilized for ARIES to derive leaf area, leaf water content and 

canopy water content are based on validated scientific methods but are newly implemented 

for the African drought use case. The algorithms are mathematically sound and the results are 

being validated in the context of ARIES. The hyperspectral input data is available for research 

purposes and training data is not needed for the approaches, though further validation data 

would be advantageous to prove the stability of the approaches under different conditions. The 

algorithms are integrated in open-source tools, which in turn have been integrated on the Food 

Security Explorer to allow the Early Adopters to use the algorithms for different locations and 

time periods than covered in ARIES. More details on the prototype implementation can be 

found in D08 – Documentation of processors/toolboxes and software.  
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