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1  Ba c k gr o u n d &  I n t r o d u c t i o n  

EO AFRICA (African Framework for Research Innovation, Communities and 

Applications) is a research and development initiative by ESA. It focuses on building 

African - European R&D partnerships and the facilitation of the sustainable adoption of 

Earth Observation and related space technology in Africa. 

Within “ARIES” experimental EO analysis techniques are being developed and 

validated, addressing water management and food security in Africa.  

To ensure the products developed within the project serve the needs of future users 

the techniques are being developed closely together with African Early Adopters. 

These five organizations are covering east (AfriGeo, EO research group within the 

Regional Centre for Mapping of Resources for Development in Kenya & the Regional 

Centre for Mapping of Resources for Development in Kenya itself), west (AGRHYMET 

Regional Centre and AAH Action Against Hunger in Niger) and southern (Zambian 

Agricultural Knowledge and Training Centre LTD in Zambia) Africa. Thereby the 

developed algorithms and approaches can be validated, tested and evaluated in 

different geographic regions with different climatic conditions and agricultural practices. 

 

2  E x p er im e n t a l  E O D at a  P r o d u c ts  

2 . 1  T h e r m a l  D a t a  P r o d u c t s  

2 . 1 . 1  D r o u g h t  I n d e x  ( L I S T )  

Drought is characterized by a prolonged deficiency in water supply, affecting various 

aspects such as the atmosphere, soil, streamflow, groundwater, and economic 

activities (AghaKouchak et al., 2015). It poses substantial challenges to socioeconomic 

systems, leading to issues like food security, water resource inequality, and 

environmental degradation, including desertification and debris flow. Africa emerges 

as a focal point for drought-induced global change, with frequent hazards adversely 

affecting biodiversity and natural resource sustainability (Hadebe et al., 2017). The 

increasing frequency of drought exacerbates these challenges, resulting in tropical 

wildfires, heatwaves, and affecting approximately 20% of the population with hunger 

(Otekunrin et al., 2020). Urgent efforts are needed for effective drought monitoring in 

Africa. Diverse drought indices, reliant on meteorological variables and remote sensing 

(RS) data, have been developed.  
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Regional applicability of meteorological drought indices faces challenges due to the 

limited coverage of ground-based monitoring stations. In comparison, satellite RS 

offers a promising alternative by leveraging indirect indicators such as green 

vegetation dynamics and land surface temperature (LST) variations. Nevertheless, 

RS-based indices encounter limitations such as infrequent temporal sampling and 

cloud cover (Jia et al., 2022). Furthermore, they often lack clear physical interpretations 

essential for effective water resource management and policy development. Soil 

moisture RS products are available on a daily basis, whereas they are constrained by 

coarse spatial resolutions (> 9 km), restricting their effectiveness for localized irrigation 

planning. Additionally, the validation of existing drought indices, remains insufficient 

across diverse landscapes and climatic conditions in Africa. Addressing these gaps is 

crucial for enhancing the reliability and applicability of drought monitoring systems 

across the region. 

 

Therefore, developing drought indices that incorporate thermal and optical data from 

advanced remote sensing (RS) sensors will significantly improve our ability to monitor 

agricultural drought at the local level. The ECOsystem Spaceborne Thermal 

Radiometer Experiment on Space Station (ECOSTRESS) was deployed aboard the 

International Space Station (ISS) on June 29, 2018 (Fisher et al., 2020). It Serves as 

a pioneering mission for forthcoming Thermal Infrared (TIR) endeavors, capturing 

thermal imagery across five bands spanning 8 to 12.5 μm. With its advanced 

capabilities, it achieves high spatio-temporal resolution, obtaining TIR data at various 

times throughout the day. Through resampling at the nadir, ECOSTRESS achieves a 

pixel size of approximately 70 × 70 m, facilitating the retrieval of evapotranspiration 

(ET) data at fine spatial scales, including small ecosystem patches and individual 

agricultural fields. The revisit time averages between 1 to 5 days, significantly 

surpassing previous high resolution thermal missions (e.g., Landsat). In regions with 

high latitude where the ISS orbital path varies, observation frequency can increase, 

allowing multiple observations within a single day. This frequent observation capability 

is particularly advantageous for assessing agricultural heat and water stress (Jia et al., 

2024). Therefore, within this project, thermal drought indices will be utilized using 

ECOSTRESS data alongside other high-resolution optical data across Africa.  

 Evaporative Stress Index (ESI), calculated based on ECOsystem Spaceborne 

Thermal Radiometer Experiment on Space Station (ECOSTRESS) evapotranspiration 

product, is proposed as the primary thermal drought index in the project. In addition, 

several meteorological and agricultural drought indices are employed for the evaluation 

and inter-comparison. 
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The Keetch-Byram Drought Index (KBDI), calculated using maximum daily 

temperature and total daily precipitation from the fifth-generation European Centre for 

Medium-Range Weather Forecasts atmospheric reanalysis v5 (ERA5), serves as a 

meteorological drought index. Shortwave Infrared Transformed Reflectance (STR), 

derived from Moderate Resolution Imaging Spectroradiometer (MODIS) shortwave 

infrared reflectance sensitive to water content, is used as a representative RS-based 

index. Additionally, a hybrid Scaled Drought Condition Index (SDCI) is involved, 

calculated using normalized MODIS LST, Normalized Difference Vegetation Index 

(NDVI), and precipitation from ERA5. To better validate the drought indices, in-situ SM 

from 36 sites within the International Soil Moisture Network (ISMN) in Africa serves as 

the ground truth for agricultural drought signals. The drought indices were implemented 

at 8-day and monthly scales. 

 

2 . 1 . 2  H i g h - R e s o l u t i o n  C r o p  W a t e r  S t r e s s  ( V I T O )  

The most straightforward way to derive crop water stress information from thermal 

Earth Observation measurements, is to compute the difference between ambient air 

temperature (𝑇𝑎𝑖𝑟) and the land surface temperature (LST), as indicated by e.g. Idso 

et al. (1977). The general concept here is that crops having insufficient access to water 

resources tend to close their stomata to limit excessive water loss through 

transpiration. As a result, the leaf surface of the crop heats up compared to the 

surrounding air. Hence, strongly positive values of LST – 𝑇𝑎𝑖𝑟 indicate water stress in 

crops. Currently, the main limitation to offer such a product in an operational setting is 

the lack of high spatial and temporal resolution thermal satellite data. While waiting for 

future thermal satellite missions to bridge this gap, several data sharpening techniques 

have been proposed to generate high-resolution LST data based on lower resolution 

alternative data sources. One such popular approach is the Sen-ET algorithm, which 

generates 20 m daily LST data based on a data fusion approach between 1 km thermal 

data from Sentinel-3 (S3) and 20 m optical data from Sentinel-2 (S2). 

Three main problems can be identified regarding this sharpened 20 m LST product 

from Sentinel-3: 

1. Generally, the operational Sentinel-3 SLSTR split-window (SW) algorithm 

systematically overestimates LST, due to wrongly assigned land covers and 

corresponding SW coefficients (Pérez-Planells et al., 2021; Sanchez et al., 2024).  

2. Although the thermal sharpening procedure ensures conservation of surface 

energy between the low- and high-resolution products, sharpened high-

resolution LST products (especially when sharpening ratios are high as is the 

case for S3), are known to suffer from a loss of LST dynamic contrast compared 

to an LST product originally captured at high resolution. Bellvert et al. (2020) for 
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instance concluded that extremes in LST were not properly captured in S3 

sharpened LST imagery, making it less suited for precision agriculture 

applications as compared to high-resolution LST imagery.  This is especially 

true for highly heterogeneous scenes such as orchards or complex agricultural 

landscapes in a smallholder farming context.  

3. Directional effects caused by sun-sensor geometry variations between 

subsequent LST observations typically can result in LST differences of more 

than 10 K (Lagouarde & Irvine, 2008), causing important inconsistencies in LST 

time series. 

Given these remaining issues, we suggest adding a two-stage LST correction 

procedure to produce higher quality high-resolution LST measurements. The first stage 

involves cross-calibrating the thermally sharpened LST with ECOSTRESS LST to 

compensate for the known quality issues with S3 data itself and the sharpening 

procedure. The second stage entails the quantification of directional effects by 

comparing simultaneous acquired cross-calibrated thermally sharpened S3 images 

and ECOSTRESS with different viewing geometry. This allows to remove the 

directional effects in the high-resolution S3 LST.  

2 . 2  H y p e r s p e c t r a l  D a t a  P r o d u c t s  ( V I S T A )  

2 . 2 . 1  L e a f  A r e a  I n d e x  &  L e a f  W a t e r  C o n t e n t  

Leaf Area Index (LAI) is defined as the amount of leaf area (m²) in a canopy per unit 

ground area (m²) (Watson 1947). It is a critical variable for applications ranging from 

climate science to food security and agriculture as it is one of the main driving forces 

of net primary production, water and nutrient use, and carbon balance. As such, it is 

an essential variable in describing and quantifying processes such as photosynthesis, 

respiration, precipitation interception and carbon build-up as well as an indicator for 

plant health and development (Bréda 2008, GCOS 2011, Asner et al. 1998, Ballaré et 

al. 2012) 

The Leaf Water Content (LWC) is defined as the content of water per leaf area (g/cm²). 

Multiplied by the leaf area, the water content of the plant can be calculated. The plant 

water is an important indicator of the current status of the plant concerning its water 

demand and the possible need for irrigation (Quemada et al. 2021). 

LAI can be determined in the field through a variety of direct and indirect methods 

(Fang et al. 2019). Moreover, retrieving LAI from remote sensing data has been 

extensively studied over the last few decades (Goel 1989, Baret 2015, J. M. Chen 2018, 

Houborg et al. 2007, Verrelst et al. 2015, Zheng & Moskal 2009). Retrieval methods have 

been developed for a wide range of data captured mainly by passive multispectral, 
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microwave and LiDAR sensors (Fang et al. 2019). More recently the developed methods, 

which can be categorized into empirical transfer functions and model inversion methods, 

are being expanded to upcoming hyperspectral sensors (Berger et al. 2018). The latter 

make use of a radiative transfer model, with the aim of establishing a relationship between 

fundamental canopy, soil and leaf properties, such as LAI, and the scene reflectance, 

given a specific sun-surface-sensor geometry (Goel & Thompson, 2000; S. Liang, 2004). 

PROSAIL (Berger et al., 2018, Jacquemoud et al. 2009), which combines the PROSPECT 

leaf optical properties model (Jacquemoud & Baret, 1990) and the SAIL canopy 

bidirectional reflectance model (Verhoef, 1984) has become one of the most popular 

radiative transfer tools. It is generally user friendly, robust and has been consistently 

validated in laboratory, field and space experiments over an extended period, during which 

it has also been under continual development (Jacquemoud et al. 2009, Verhoef & Bach 

2003, Weiss et al. 2001, Kuusk 1991, Verhoef et al. 2007, Verhoef & Bach 2007, 

Jacquemoud et al. 1996. Fourty et al. 1996, Le Maire et al. 2004, Feret et al. 2008, Feret 

et al. 2017, Feret et al. 2021). One way to apply the model is to generate a set of modelled 

reflectance spectra based on a set of properly configured input variables and stored in a 

look-up table (LUT). The subsequent inversion process determines the set of canopy 

biophysical variables, aiming for the best match between the calculated and the remotely 

sensed reflectance (D. Huang et al. 2008, Verrelst et al. 2014). 

2 . 2 . 2  C a n o p y  W a t e r  C o n t e n t  

Canopy water content (CWC) is a vital parameter to monitor the plant status and 

support a balanced water supply and irrigation. Water stored in agricultural plants is 

linked to biochemical factors such as vegetation transpiration (Running et al., 1991) 

and net primary production. Especially for agricultural management in arid regions, 

accurate retrieval of the water content and vegetation traits might be crucial for 

mitigating water stress due to climate-related droughts and heat-waves (Tagliabue et 

al., 2022). 

For canopy water retrieval from hyperspectral, it is possible to use the specific H2O 

water absorption features contained in the detailed reflectance spectra. This is a 

difference to multi-spectral data, which significantly broader and significantly less 

bands and thus can only estimated the water content via broad changes in the 

spectrum (e.g. lower value in the short-wave infrared). Hence, where multi-spectral 

indices only allow for a qualitative derivation of the canopy water content, the 

hyperspectral absorption features allow for a quantitative derivation of the canopy 

water content.  

The Plant Water Retrieval (PWR) extracts quantitative water content information in [g 

cm-2] or [cm] from hyperspectral images. It is implemented in the EnMAP-Box (Wocher 

et al. 2018). It applies the Beer-Lambert law to inversely determine the optical 
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thickness d of the water layer responsible for the water absorption feature at 970 nm 

using water absorption coefficients for pure liquid water.  

 

3  P r o d u c t  Re s u l t s ,  P r o t o t y p i n g  &  P l a t fo r m  

In t e gr a t i o n  

3 . 1  T h e r m a l  D a t a  P r o d u c t s  

3 . 1 . 1  D r o u g h t  I n d e x  ( L I S T )  

A correlation coefficient (cc) analysis was conducted across all ground sites to 

examine the relationship between ISMN SM and various drought indices. The 

corresponding statistical results are presented in Table 1. The median cc serves as 

a measure of overall performance, while the standard deviation (STD) is provided to 

account for variations in performance across different sites at 8-day and monthly 

scales. 

Table 1 Median value at different sites and overall standard deviation (STD) statistics of Correlation coefficient (cc) 

between in-situ SM and drought indices. 

Index 8-day monthly 

cc STD cc STD 

SMAP 0.85 0.07 0.88 0.11 

SWI 0.88 0.12 0.91 0.21 

KBDI -0.47 0.17 -0.55 0.24 

SDCI 0.40 0.15 0.44 0.24 

STR 0.60 0.21 0.61 0.25 

ESI 0.49 0.16 0.53 0.19 

 

Table 1 reveals that SMAP and SWI exhibit the highest median correlation 

coefficients (cc) close to 0.9, with SMAP displaying significantly lower STD, signifying 

a more consistent performance across diverse conditions compared to ESA SWI. 

Notably, all meteorological and remote sensing drought indices fall short in capturing 

the temporal variability of SM when compared to MW SM products. The cc values 

hover around 0.5, with a corresponding STD of 0.17. Notably, STR outperforms 

others, and post time upscaling, KBDI and STR demonstrate similar performance. 

ESI, with considerably fewer data points, exhibits a performance gap possibly 

attributed to data scarcity.  

After removing the seasonality to detect the anomalous SM signals, the temporal 

variability of different drought index and soil moisture anomalies are shown in Figure 

1. 
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Figure 1 Drought indices captured the soil moisture anomalies (marked as blue) 

 

In comparison, ECOSTRESS ESI shows the ability to map the drought stress at local 

scales. The Mali site (Lat: 16.6730 °, Long: -3.0448 °) was selected for local mapping 

analysis. The land cover type map (Figure 2) indicates the high heterogeneity around 

the site. The land cover type data is from Copernicus Global Land Cover Layers 

(CGLS-LC100) with 100m spatial resolution. 

 

 

Figure 2 Land cover types surrounding the Mali site, and the spatial window size is 21 km. 

 

The monthly ESI is subsequently mapped, revealing distinct temporal variations 

(Figure 3). Spatial patterns align closely with land cover characteristics, notably 

indicating lower drought stress in wetlands during October in comparison to grassland 

and barren land (Fig. 3d). Figure 3 underscores the potential utility of ESI for localized 

drought stress monitoring. 
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Figure 3 Monthly ESI maps at the Mali site (Lat: 16.6730 °, Long: -3.0448 °) in 2019 (a) July, (b) August, (c) September, 

and (d) October. 

 

Even when averaging ESI images within a month, the ESI for July (Figure 3) exhibits 

a distinct data gap. This underscores the imperative to reconstruct the LST data, prior 

to its application to fully leverage drought indices derived from high-resolution remote 

sensing. The image comparison in Figure 4 with other indices demonstrates that high-

resolution thermal data shows its better performance in mapping drought at local 

scales. In addition, due to the short span and limited sampling frequency of 

ECOSTRES data, detrending cannot be done, thus the seasonal cycle may also impact 

the results. 

  

Figure 4 Local drought mapping using (a) ECOSTRESS ESI, (2) MODIS STR, and (3) MODIS NDWI 

 

3 . 1 . 2  H i g h - R e s o l u t i o n  C r o p  W a t e r  S t r e s s  ( V I T O )  

 

The crop water stress indicator has been computed over the test sites located in 

Zambia (AKTC) and Mali (ACF). Some results for Zambia are summarized in Figure 5. 

(a) (b) 

(c) (d) 
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Three important observations can be made based on this figure, confirming the LST-

Ta indicator is working as intended and is indeed sensitive to crop water stress: 

1) The LST-Ta indicator is highly sensitive to land cover, showing high values 

when the field is bare and low values when covered by a crop. This highlights 

the need to always account for land cover when interpreting this indicator (hence 

the inclusion of NDVI in the figure). 

2) As can be seen in the left panel of the figure, LST-Ta indicator drops significantly 

following a major precipitation event, after which it slowly increases again. This 

is completely expected behaviour in a hot climate where water stress kicks in 

relatively quickly following a precipitation event. 

3) During the growing season, the LST-Ta indicator shows distinctive peaks on the 

rainfed site, which are not present on the irrigated plot, indicating more crop 

water stress in the non-irrigated site, which is completely in line with 

expectations. This shows indeed that this specific indicator is sensitive to 

capturing the impact of irrigation practices on crop water stress, and potentially, 

productivity. 

 

Figure 5 Crop water stress indicator (LST-Ta in red) and NDVI (in green) time series for two specific locations at the 

AKTC test site in Zambia during the main agricultural season in 2024: (left) a large pivot, representing 

irrigated agricultural fields, (right) a typical example of non-irrigated agricultural field. Blue lines represent 

major precipitation events, based on CHIRPS rainfall data extracted from the FAO WaPOR data portal. The 

orange circle in both figures highlight key difference in terms of crop water stress between the two sites. 

 

When applying the crop water stress indicator to the Mali test sites, the limitations of 

the approach become apparent. As shown in Figure 6, left panel, for some fields the 

crop water stress indicator does make sense, showing relatively low values during the 

growing season, high values during periods of bare soil and a peak in crop water stress 

at the start of the growing season, matching the reported severity of drought for that 

particular field. On the other hand, the right panel of the same figure shows an example 



 

 

D19 – Final Report 

 
 

 

 

EO Africa // ARIES 

 

 

 

Page 16  

 

of a field where the derived crop water stress indicator shows no or limited correlation 

with land cover (as represented by the NDVI time series). This is a clear case where 

the results of the LST sharpening procedure cannot be trusted and final results should 

be interpreted with great care. This can be explained by considering the broader 

context of the specific agricultural field (Figure 7). Most of the area consists of desert, 

with only limited agricultural activities. In order for the LST sharpening approach to 

work, one needs a good amount of relatively homogeneous 1km x 1km pixels, 

especially over agricultural areas. On the Mali test site, this is clearly not the case, 

leading to unstable and unreliable high-resolution LST estimates. As said, this clearly 

implies the method cannot readily be applied anywhere. Future, higher spatial 

resolution thermal sensors will play a key role in alleviating this current limitation. 

 

  

Figure 6 Crop water stress indicator (LST-Ta in red) and NDVI (in green) time series for two specific locations at the 

ACF test sites in Mali during the main agricultural season in 2024: (left) an agricultural field which is known 

to have faced severe drought at the start of the season and has been partially destroyed by wildlife, (right) 

an agricultural field that has faced only mild consequences from drought. 
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Figure 7 True color RGB image of the surrounding landscape for the Mali test site. The red dot identifies the specific 

field for which the LST-Ta and NDVI time series are shown in Figure 9, right panel. 

The workflows that generate the crop water stress indicator have been published in an 

open-source GitHub repository. These workflows in addition contain the necessary 

tools to upload the generated products to the Food Security Explorer platform. 

3 . 1  H y p e r s p e c t r a l  D a t a  P r o d u c t s  ( V I S T A )  

3 . 1 . 1  L e a f  A r e a  I n d e x  

LAI values were determined across the test site via model inversion of the PROSAIL 

model available within the EnMap toolbox. This was done for all available EnMap and 

PRISMA data takes (selected results in Figure 8) and a timeline of LAI results was 

created for several pixels within the irrigation pivots where wheat was being cultivated 

during the 2023 dry season (Figure 9). The area surrounding point 4 was not planted 

in 2023 (see Figure 8 Leaf Area Index results calculated from PRISMA data acquired 

during the 2023 dry season at AKTC Zambia.).  

 

Figure 8 Leaf Area Index results calculated from PRISMA data acquired during the 2023 dry season at AKTC Zambia. 
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Figure 9 Leaf Area Index values calculated from PRISMA and EnMap data. Timeline at selected pixels within AKTC’s 

irrigation pivots. Numbers correspond with locations indicated in Figure 8. 

The time-series was also calculated for the Mali test-site and is shown in the following 

figure. Difference in LAI development are visible also in this drier area. Overall, the LAI 

values are smaller than in the irrigated fields in Zambia.  
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Figure 10 Leaf Area Index results calculated from PRISMA and EnMap data acquired during 2024 at the Mali test-site 

 

3 . 1 . 2  C a n o p y  &  L e a f  W a t e r  C o n t e n t  

Canopy Water Content was calculated using the Plant Water Retrieval (PWR) Tool 

available within the EnMap toolbox (Figure 11). 
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Figure 11 Canopy Water Content results calculated from PRISMA data acquired during the 2023 dry season at AKTC 

Zambia. 

 

The method was developed by Wocher et al. 2018. Included in its implementation 

within the EnMap toolbox is a calibration factor which has been validated through 

performance assessment. The PWR tool has proven its ability to accurately predict 

plant water conditions as found in samples taken at winter wheat and corn test sites in 

Bavaria. The transferability of the method was also shown (Wocher et al. 2018). While 

validation with in-situ data still helps to prove the robustness of results, it is not strictly 

necessary. The method was chosen with regards to the unavailability of quantitative 

plant water data at the AKTC test site. 

Leaf Water Content was then derived by combining LAI and CWC results (Figure 12 

Leaf Water Content calculated from CWC and LAI derived from PRISMA data 

(31.07.2023)). As the intermediate products have already been validated or do not 

need validation, no separate validation has been conducted for LWC. 
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Figure 12 Leaf Water Content calculated from CWC and LAI derived from PRISMA data (31.07.2023) 

The time-series was also calculated for the Mali test-site and is shown in the following 

figure. 

 

Figure 13 Canopy Water Content results calculated from PRISMA and EnMap data acquired in 2024 at the Mali test-site 
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3 . 1  I n t e g r a t i o n  i n  F o o d  S e c u r i t y  E x p l o r e r  

After development of the algorithms, the next aim of ARIES was to deploy a prototype 

with the active involvement of African end-users, so that they can test the innovative 

EO solutions. Additionally, the prototype was used to trigger interest by a wider 

community of potential stakeholders, as it is integrated into the Food Security Explorer 

(https://foodsecurity-explorer.com) (formerly Food Security-TEP) and thus is publicly 

available. For the sponsoring of platform services for the data processing and prototype 

hosting needed by the project, a Network of Resources (NoR) sponsorship 

(https://portfolio.nor-discover.org/) was requested and granted by ESA. The Food 

Security Explorer hosts many datasets relevant for this project, including the full range 

of the Copernicus acquisitions via connection to the CDSE as well as directly hosting 

the ECOSTRESS dataset, which was of course very relevant for this project. 

The test prototype implementation followed Agile Development methods and 

engineering best practices. This allowed to rapidly move from the initial algorithm/s and 

processor assessment, towards the test prototype, while maintaining iterative 

interactions with the Early Adopters and frequent development cycles.  

Figure 14: Food Security Explorer – PERCEPTION view 

For data discovery and analytics, a PERCEPTION (previously called DAMA - Data 

Analytics and Management) component is integrated. Also, an INTELLECT (previously 

called SIR - Service interface Runner) component is available for processing in 

different modes. This means, inputs can either be chosen at run time (standard), bulk 

processing support (processing campaign) is available, or triggering services 

automatically upon occurrence of a specific event (event driven). 

In order to ensure platform interoperability, openEO functionalities are added to the 

platform. 

https://foodsecurity-explorer.net/
https://portfolio.nor-discover.org/
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Cloud computing capabilities together with availability of datasets makes FS-X suitable 

for algorithm integration. For algorithm development, prototyping, testing or integration 

the platform offers application services (e.g. QGIS, SNAP) as well as Jupyter Hub in a 

basic and data science environment. Algorithms can also be shared with users in the 

form of services. The following figures show examples of the integration of ARIES 

results on the platform. 

 

Figure 15: Crop water stress indicator uploaded to the Food Security Explorer platform. 

 

Figure 16: QGIS and EnMAP Toolbox on FS-X. Access to Plant Water Retrieval calculations as example. 
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Figure 17: Retrieval of the Plant Water Content using the PWR Algorithm of the EnMAP Toolbox, 

visualisation as map and spectra of test pixel as illustrated 

 

4  P o l i c y  H i g h l i g h t s  

Early in the project, a Policy Traceability Matrix has been constructed, summarizing 

the major policies in place related to natural disasters (and particularly drought) at 

international, continental and country scale for the three target countries in the project 

(Zambia, Niger and Kenya). This document already highlighted the added value of 

climate-smart agriculture and the need for more fine-grained monitoring capabilities in 

this respect. At the end of the project, we compiled the Policy Highlights document, 

summarizing the potential impact of the developed indicators (and our enhanced EO-

based monitoring capabilities provided by the upcoming satellite missions in general) 

in light of recent agricultural policy frameworks. The analysis has been restricted to 

Zambia and the Sahelian region (represented by Niger), two distinctively different use 

cases in terms of agricultural practices and environmental challenges. 

Even though characterized by different agro-climatic, geographical and environmental 

conditions, the agricultural sectors in both Zambia and the Sahel region face similar 

challenges, i.e. low agricultural productivity, lack of irrigated agriculture, conflicts on 

land use and water resources and adverse impacts of climate change. We highlighted 

various ways in which EO data can support in monitoring and enhancing the 

effectiveness of agricultural policies, fostering long-term food security and sustainable 
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land management. Reliable, objective and detailed information on crop types, 

production, phenology, water stress and health can directly feed into improved land 

use maps, drought early warning systems, crop water productivity services, agro-

pastoralist guidance systems, insurance schemes, seed/input dispersal strategies, 

climate change mitigation projects and agricultural mechanization policies. Despite this 

large potential, the adoption of EO data is currently limited in both regions. Capacity 

development and knowledge transfer therefore remain crucial in boosting the uptake 

of EO data in the agricultural sector across the continent. 

The developed indicators in the framework of the ARIES project are predominantly 

expected to contribute to improved drought early warning systems and enhancing crop 

water productivity through improved irrigation advise at field scale. 

Future operational missions like CHIME and LSTM will be offering even more detailed 

measurements of crop health, water usage, and soil conditions. By integrating EO data 

into policy-making and enforcement, Zambia and Niger can ensure that their 

agricultural sectors grow sustainably and remain resilient in the face of climate 

challenges.  

5  Re c om m e n d a t i o n s  f or  CH I M E  an d  LS T M  

5 . 1  L S T M  

• There is a pressing need for a reliable cloud mask. Our analysis revealed 

significant differences in Land Surface Temperature (LST) between 

ECOSTRESS and thermally sharpened S3 LST, primarily due to clouds that 

were not correctly identified by the S3 cloud mask. This discrepancy 

underscores the importance of enhancing cloud detection capabilities to ensure 

accurate and consistent LST estimations. Next to that, sufficient research 

should be devoted towards efficiently filling the observed data gaps, through 

combination with other data sources such as optical or radar data. 

• Safeguarding the accuracy of LST estimation is crucial. S3 data has shown a 

tendency to overestimate LST, attributed to inaccuracies in assigning land cover 

types and their corresponding split-window coefficients within the LST retrieval 

algorithm. Addressing these issues is paramount to rectify biases and enhance 

the overall reliability of LST data derived from LSTM. 

• Implementing a directional correction on the LSTM-derived LST measurements 

is highly recommended. This correction would not only improve the quality of 

the LST product by itself, but also enhance comparability with other sensors 

such as SBG and TRISHNA, hence resulting in a more reliable and consistent 

daily time series of LST at global scale. A generic directional correction 

approach, involving one parameter per tile, could already yield notable 
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improvements. However, for enhanced data consistency, a more refined pixel- 

or field-specific correction method would be even more beneficial. These 

enhancements would significantly contribute to the overall effectiveness and 

accuracy of LSTM in analyzing and generating crop water stress index data. 

• Additionally, efforts should be directed towards downscaling other crucial driving 

data, which also significantly influence ET estimation. 

5 . 2  C H I M E  

• High spectral quality is of essence for absorption band analysis: Using 

small band ratios for absorption analysis means that noise in the images can 

easily make it impossible to derive accurate quantitative results. Below is an 

example using EnMAP data and the EnMAP Toolbox to derive plant water 

content. There is a systematic striping noticeable in the results, which cannot 

be explained other than with systematic sensor calibration issues. Issues like 

these will make the accurate retrieval of plant parameters much harder and will 

hinder user uptake of CHIME. 

 

 

Figure 18: Example of striping in EnMAP data after plant water retrieval with EnMAP toolbox 

 

• High quality pre-processing: To fully utilize the information depth of the data, 

high quality pre-processing is necessary. This obviously includes the spectral 

domain, but also the spatial domain. A geometric correction that aligns CHIME 

with Sentinel-2 will make a synergistic use of the two data sources much easier, 

especially if a (semi-) automated way of time series analysis is the goal. With 

the current hyperspectral sensors PRISMA and EnMAP, every scene has to be 
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checked and its location corrected if necessary. This is an extra step, that costs 

a lot of time and makes the use of available tools that use the field boundaries 

to mask the image and only produce results for the relevant fields impossible 

for users who don’t have the necessary knowledge on how to geometrically 

correct the images.  

 

Figure 19: Geometric offsets observed in PRISMA and EnMAP data at the AKTC test site. 

• Tools that can handle the data volume: Efficient tools that can handle the 

high dimensionality and large volume of the hyperspectral data without crashing 

or needing so much time for computation that the delay in agricultural product 

delivery becomes too long are necessary. Additionally, these tools should be 

able to process significant areas without loss of efficiency or accuracy, so that 

the full benefits of the hyperspectral data can be utilized. Parallelized software 

and cloud computing can support these goals.  

 

6  O ut r e a c h  a n d  P r om o t i o n  

In the framework of the EOAfrica Explorers ARIES project, two public webinars were 

organized which served to communicate the project’s progress and main outcomes to 

the African and European EO research communities and potential end users. The first 

webinar mainly served as a way to closely align the project’s scope with the monitoring 

needs of our Early Adopters. Through a series of presentations and following 
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discussion, the consortium was able to clarify what could be expected in terms of 

indicator definition and availability. It also became clear that the potential end users 

exhibit a high variety in prior skills and expertise when it comes to dealing with and 

generating geospatial indicators based on EO data. Most of the Early Adopters do not 

have the means or knowledge to generate the indicators themselves but would rely on 

technical partners to conduct indicator generation. This has been a valuable lesson for 

the consortium, as it clearly indicates that future capacity building activities should 

primarily focus on indicator interpretation, rather than indicator generation. The second 

webinar was held near the end of the project and focused on the key scientific 

achievements related to indicator development based on hyperspectral and thermal 

data, as well as highlighted the integration of our products and workflows in the Food 

Security Explorer platform. 

Additionally, the team participated in several scientific conferences (e.g.  ESA's 

'International Workshop on High-Resolution Thermal EO',10-12 May 2023, EO for 

Agriculture under Pressure 2024 Workshop 13-16 May 2024, EO for Africa Symposium 

23 – 26 September 2024) and organized a very successful user workshop at AKTC in 

Zambia on Sep 12th 2024.  

 

7  Co n c l us i o n  

The ARIES project successfully developed, validated and prototyped experimental EO 

analysis techniques for thermal and hyperspectral data to deliver products to improve 

the monitoring of drought conditions and the detection of crop water stress in support 

of food security. 

Users in Senegal, Mali, Niger, Kenya and Zambia were involved in the project, giving 

their requirements and giving feedback on the developed products. Interest among the 

African communities was high, as evidenced by the many and high-ranking participants 

of the user workshop in Zambia.  

One of the main challenges for the validation of the project results was the relatively 

sparse availability especially of quantitative in-situ validation data. We have thus in 

some cases resorted to external validation data (e.g. Soil Moisture Data from the 

International Soil Moisture Network, LAI data calculated from Sentinel-2 multispectral 

data). In other cases, our methods were chosen to include approaches that have been 

validated before (e.g. thermal sharpening and plant water retrieval). Also, expert 

interviews with the African users were conducted. The users could explain the patterns 

seen in the results and thus validate them. 
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Based on the Policy Highlights document and discussions with the Early Adopters, it 

is clear that Earth Observation has a major role to play in monitoring and improving 

food security in Africa. The new hyperspectral and thermal missions are expected to 

drastically increase our ability to provide meaningful information in this respect. Based 

on our experiments, we were able to formulate specific recommendations for further 

improving these crucial, future missions. 
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